• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laser-micromachined under-water micro gripper using ionic conducting polymer film (ICPF).

January 2000 (has links)
Kwok, Yiu-fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 87-89). / Abstracts in English and Chinese. / ABSTRACT --- p.I / ACKNOWLEDGMENTS --- p.II / TABLE OF CONTENT --- p.III / LIST OF FIGURES --- p.V / Chapter 1 --- INTRODUCTION --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Motivation of this project --- p.1 / Chapter 1.3 --- Organization --- p.2 / Chapter 2 --- LITERATURE SURVEY --- p.3 / Chapter 2.1 --- Ionic Conducting Polymer Film (ICPF) --- p.3 / Chapter 2.2 --- Electroactive Polymer (EAP) --- p.4 / Chapter 2.3 --- Micro Active Guide Wire Catheter System --- p.5 / Chapter 2.4 --- Space Application - Dust Wiper --- p.6 / Chapter 2.5 --- Micro gripper --- p.8 / Chapter 2.6 --- Summary of literature survey --- p.14 / Chapter 3 --- METAL-POLYMER COMPOSITIONS --- p.15 / Chapter 3.1 --- Introduction --- p.15 / Chapter 3.2 --- Perfluorosulfonic acid polymer (Nafion) --- p.15 / Chapter 3.3 --- Working principle of ICPF --- p.19 / Chapter 3.4 --- Different types of composition --- p.21 / Chapter 3.4.1 --- Chromium-Gold-polymer composite --- p.23 / Chapter 3.4.2 --- Platinum-Gold-polymer composite --- p.25 / Chapter 3.4.3 --- Silver-polymer composite --- p.27 / Chapter 3.4.4 --- Silver/Copper-gold polymer composite --- p.27 / Chapter 3.4.5 --- Gold-polymer composite --- p.28 / Chapter 4 --- ICPF FABRICATION --- p.30 / Chapter 4.1 --- Introduction --- p.30 / Chapter 4.2 --- ICPF fabrication process --- p.31 / Chapter 4.3 --- Surface pre-treatment --- p.33 / Chapter 4.4 --- Gold thin film deposition (Evaporation) --- p.34 / Chapter 4.4.1. --- Filament evaporation --- p.35 / Chapter 4.4.2 --- Electronic-beam evaporation --- p.39 / Chapter 4.4.3 --- Structural analysis of evaporation --- p.40 / Chapter 4.5 --- Chemical electroplating --- p.42 / Chapter 4.5.1. --- Deposition rate calibration --- p.44 / Chapter 5 --- DESIGN AND PACKAGE --- p.46 / Chapter 6 --- LASER MICROMACHINING --- p.49 / Chapter 6.1 --- Introduction to Laser micromachining --- p.49 / Chapter 6.2 --- C02 laser --- p.50 / Chapter 6.3 --- Nd:YAG Laser --- p.51 / Chapter 6.4 --- Laser micromachining of ICPF actuator --- p.52 / Chapter 7 --- EXPERIMENTAL RESULTS AND ANALYSIS --- p.61 / Chapter 7.1 --- Introduction --- p.61 / Chapter 7.2 --- Measurement setup --- p.62 / Chapter 7.3 --- Width test --- p.68 / Chapter 7.4 --- Length test --- p.73 / Chapter 7.5 --- Voltage test --- p.76 / Chapter 8 --- MICRO GRIPPER ACTUATION --- p.79 / Chapter 8.1 --- Development of micro gripper --- p.79 / Chapter 8.2 --- Micro gripper --- p.80 / Chapter 9 --- CONCLUSION --- p.82 / Chapter 10 --- APPENDIX --- p.83 / Chapter 10.1 --- Procedures in using E-beam evaporator --- p.83 / Chapter 10.2 --- Procedures in using Thermo couple evaporator --- p.85 / Chapter 11 --- REFERENCE --- p.87
2

Characterisation and optimisation of the variable frequency microwave technique and its application to microfabrication

Antonio, Christian. January 2006 (has links)
Thesis (PhD) - Swinburne University of Technology, Industrial Research Institute Swinburne - 2006. / A thesis submitted to the Industrial Research Institute Swinburne, Swinburne University of Technology in fulfillment of the requirements for the degree of Doctor of Philosophy - 2006. Typescript. Includes bibliographical references (p. 183-193).
3

Design and manufacturing of plastic micro-cantilevers by injection molding

Rios, Erick E. 08 1900 (has links)
No description available.
4

Nanomaterials characterization and bio-chemical sensing using microfabricated devices

Yu, Choongho, Shi, Li, January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Li Shi. Vita. Includes bibliographical references.
5

Thin film resistance to hydrofluoric acid etch with applications in monolithic microelectronic/MEMS integration

McKenzie, Todd G. 01 December 2003 (has links)
No description available.
6

Production and Analysis of Polymeric Microcantilever Parts

McFarland, Andrew W. 24 November 2004 (has links)
This dissertation presents work involving the manufacture and analytic modeling of microcantilever parts (length-width-thickness of roughly 500-100-10 microns). The manufacturing goals were to devise a means for and demonstrate repeatable production of microcantilevers from techniques not used in the integrated-circuit field, which are the exclusive means of current microcantilever production. The production of microcantilevers was achieved via a solvent casting approach and with injection molding, which produced parts from various thermoplastic polymeric materials (amorphous, semi-crystalline, fiber- and nanoclay-filled) in a repeatable fashion. Limits of the injection molding process in terms of the thinnest cantilevers possible were examined with 2 microns being the lower bound. Subsets of the injection-molded parts were used in a variety of sensing applications, some results were successful (e.g., vapor-phase, resonance- and deflection-based sensing), while others showed poor results, likely due to experimental shortcomings (e.g., fluid-phase, deflection-based sensing). Additionally, microcantilever parts with integrated tips were injection-molded and showed to function at the same level as commercial, tipped, silicon-nitride parts when imaging an optical grating; this experimental work was the first demonstration of injection-molded parts for chemical sensing and force spectroscopy. The scientific results were (i) the derivation of a length scale dependent bending stiffness and experimental evidence showing that such an effect was observed, (ii) the development of a new microcantilever experimental mode (surface stress monitoring via microcantilever bending resonant frequencies) and experimental validation of the technique, and (iii) a new method for determining microcantilever geometry based upon measurement of a bending, lateral, and torsional mode and experimental validation of the procedure.

Page generated in 0.2498 seconds