• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 9
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 17
  • 12
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Studying the Efficacy of an Injectable 3-Dimensional Fibrin Extracellular Matrix to Characterize the Effects of Antitumor Agents on SW620 Cells in a Microfluidic Device

Anastos, Thèo 01 March 2021 (has links) (PDF)
Colorectal cancer is the third most common cancer in the United States and there is currently a lot of research going into new antitumor agents to kill the cancer. One method for replicating the tumor response to a drug in vivo is by creating an in vitro drug testing model to replicate the in vivo condition. This research project was conducted to determine the efficacy of testing tumor cultures in a microfluidic device as a way to provide accurate drug responses in vitro instead of using in vivo subjects in clinical trials. A total of four experiments were conducted with each experiment increasing the complexity of the culture model. The first experiment was a 2-dimensional tumor culture that was seeded in a well plate to study how 5-fluorouracil treatments affected the tumor cell viability. The second experiment was a 2-dimensional tumor culture that was seeded on top of a fibrin extracellular matrix (ECM) gel to determine how the tumor cells would respond to the 5-luorouracil treatments while growing on the fibrin. The third experiment was to create a 3-dimensional tumor culture that was seeded inside the fibrin ECM gel. This experiment was conducted to determine if tumor cells cultured within the fibrin gel could receive nutrients from the medium diffusing through the gel. Once the tumors responded as expected in the fibrin gel, the gel could be injected into a microfluidic device for the fourth experiment. The fourth experiment was a proof of concept to determine if the tumor cells could survive in the microfluidic device and be properly treated with 5-fluorouracil. The experiment with the cells seeded in the well plates showed that an increase in 5-fluorouracil concentration caused a significant decrease in cell viability. Both fibrin gel experiments showed that the average tumor size, total tumor area, and tumor count decreased as the 5-fluorouracil concentration increased. The tumor cells were successfully able to be cultured in the microfluidic device and the average tumor size decreased significantly when the culture was exposed to the 5-fluorouracil treatment.
32

Bacteria in Blood: Optimized Recovery of Bacterial DNA for Rapid Identification

Wood, Ryan 27 March 2020 (has links)
Blood stream infections are challenging infections to rapidly diagnose. The current clinical diagnostic methods for blood stream infections require culturing the blood sample prior to identifying the bacteria and any resistance the bacteria may contain. Removing the culturing step from the bacterial identification process of a blood stream infection provides a significant reduction in the processing time. However, eliminating the culturing step shifts the difficulty from processing time to concentration, since clinical concentration levels can be as low as 10 CFU/mL in blood. This dissertation developed and evaluated many aspects of the process required to identify bacteria from a blood stream infection without culturing the bacteria. Two new methods of separating the bacteria from the blood cells were developed: inducing clotting using a centrifugal-sedimentation on a hollow disk, and filtering whole blood. Inducing clotting achieved 69\% bacterial recovery from 7 mLs of whole blood in 117 s. Filtering whole blood achieved 100\% bacterial removal from 5 mLs of whole blood in $\approx 90$ s, but the bacteria were difficult to remove from the filter. Bacterial removal from the filter after blood filtration was also investigated. At a very low bacterial concentration of 200 CFU/mL, a blood lysis solution of 3\% Tween 80 followed by a 3\% Pluronic F108 backflush solution achieved 60\% removal of the bacteria from the filter. In addition to developing two new methods, a previously developed technique using centrifugal-sedimentation on a hollow disk underwent a stability analysis in order to decrease the occurrence of mixing. This analysis yielded the development of the analytical solution to the Navier-Stokes equations for a two-fluid flow with a moving wall boundary and a free surface. The analysis also experimentally identified a stability boundary that was found to be in good agreement with the Kelvin-Helmholtz instability model. After exploring the methods to recover bacteria from blood, experiments were performed to identify a bacterial lysing solution that could lyse \textit{E. coli}, \textit{E. cloacae} and \textit{K. pneumoniae} bacteria. The best bacterial lysing solution consisted of incubating the bacteria with 1 mg/mL lysozyme for 10 min followed by the addition of 6 M GHCl and 1\% SDS. This solution obtained a 46\% DNA recovery. The DNA were then fragmented by ultrasound to reduce the segment length for DNA labelling. In addition to lysing and fragmenting the DNA, a microfluidic device was prototyped and tested for incorporating the lysing, capturing, releasing, and fragmenting of the DNA all on a single device. Whole experiments were performed which extracted the bacteria from the blood, removed and collected the DNA from the bacteria, and fragmented the DNA. The best overall recovery from an experiment performing the whole process was 26.8\%. The 26.8\% recovery was achieved with a 68\% recovery of the bacteria from spinning and a 54.1\% removal of bacteria from off of the filter and a 72.9\% recovery of the DNA from the bacteria.
33

LIQUID CRYSTAL FOAMS GENERATED BY T-JUNCTION MICROFLUIDIC DEVICE AND THEIR ELECTRICAL MANIPULATION

Shi, Shuojia 20 April 2015 (has links)
No description available.
34

Development of a Hollow-Core Fiberoptic Microneedle Device for the Treatment of Invasive Bladder Cancer

Hood, Robert L. 12 September 2011 (has links)
The hydraulic resistance characterization manuscript chronicles the early development of the hollow-core fiberoptic microneedle device (FMD). The study determined that for straight tubing with an inner bore of 150 ?m and a length greater than 50 mm long, Poiseuille's Law was shown to be accurate within 12% of experimental data for the pressure range of 69-517 kPa. Comparison between different needle design geometries indicated that tip diameters <55 ?m cause a significant increase in hydraulic resistance. Tubing length should be kept to a minimum and tip diameter should be kept above this threshold to reduce overall hydraulic resistance. The bladder treatment study describes the fabrication and testing of the FMD for treatment of invasive urothelial cell carcinomas (UCCs). Experiments investigating the fluid dispersal of single-walled carbon nanohorns (SWNHs) in the wall of inflated, healthy ex vivo bladders demonstrated that perfusion of 2 cm° on the bladder wall's surface can be achieved with a 5 minute infusion at 50 ?L/min. Irradiation of the SWNH perfused bladder wall tissue with a free space, 1064 nm laser at an irradiance of 0.95 W/cm° for 40 seconds yielded a 480% temperature increase relative to similar irradiation of a non-infused control. Co-delivery experiments demonstrated both SWNH and light delivery though a single hollow-core fiber to heat the bladder wall 33 °C with an irradiance of 400 W/cm°, demonstrating that the FMD can be used to achieve hyperthermia-based therapeutic effects via interstitial irradiation. / Master of Science
35

InsulPatch: A Slim, Powerless Microfluidic Patch-Pump for Insulin Delivery

Zhang, Shuyu 23 November 2021 (has links)
The InsulPatch is a novel integrated patch-pump device used to deliver drugs, especially macromolecular drugs that are difficult to deliver through an oral pathway and that require transdermal delivery. The patch-pump is a promising replacement for conventional syringes and battery-powered pumps because it is slim, powerless, painless, and relatively inexpensive. The majority of this thesis focuses on the fabrication and testing of microfluidic devices for the delivery of insulin, which is a model drug that is widely used and needs to be delivered transdermally. In this thesis, we demonstrate the fabrication of the patch-pump, which includes an insect-mimetic microfluidic pump fabricated using photolithography and replica molding, and a microneedle array fabricated using 3D printing. The microfluidic pump is used to drive the fluid flow powered by pressurized air or the user’s pulse, and the microneedle array is used to inject the fluid through the skin painlessly. Using pressurized air-driven flow testing, we have tested the flow rate across microfluidic pumps of various flow channel widths over a range of physiologically relevant actuation frequencies and pressures. We have found that for the specific channel design we have been using, the flow rate generally positively correlates with the actuation pressure. For devices with wider flow channels, the flow rate generally negatively correlates with the actuation frequency, whereas the flow rate increases and then decreases with increasing actuation frequency for devices with narrower flow channels. This property of these devices is beneficial in insulin delivery because the demand for insulin is generally reduced in vigorous exercise (with elevated heart rate/actuation frequency) and increased in hypertension patients (with elevated blood/actuation pressure). A major future direction of the study is to test a wide range of device designs in a sample of human subjects by attaching the device onto the wrist and measuring the pulse-driven flow across the device. We can further change the channel design parameters of the device so that it will be ideal for insulin delivery. Using the ex vivo flow testing and human subject data, we can further tailor the device design to specific patients using a genetic algorithm-guided optimization based on the heart rate and blood pressure of the patient and the desired flow rate. We will also perform computational modeling using COMSOL Multiphysics to predict the flow across devices of different designs as well as to understand the physics behind the pulse-driven flow. Finally, a 3D-printed insulin reservoir will be incorporated into our patch-pump system for the storage of U-500 insulin. / M.S. / The InsulPatch is a slim, powerless device (“patch-pump”) that can be used to deliver drugs through the skin, especially designed for drugs that are difficult to deliver orally. The patch technology is a promising replacement for conventional injection using syringes and bulky battery-powered pumps. At this stage, the primary drug that our device aims to deliver is insulin, which generally needs to be delivered through the skin. In this thesis, we demonstrate how our patch-pump is made and how its performance is tested. The patch-pump has two parts: the microfluidic pump and the microneedle array. The microfluidic pump is fabricated using a technique called photolithography, in which a photosensitive polymer is selectively cured by UV light, and replica molding, in which the precursor of another polymer is poured on a mold and cured. The microneedle array is made using 3D printing and designed in such a way so that it can be readily connected to the microfluidic pump. The microfluidic pump is used to drive the fluid flow powered by the user’s pulse, and the microneedle array is used to inject the fluid through the skin painlessly. Through testing the flow across the microfluidic pump prototypes using pressurized air, we characterized the correlation between the flow rate of fluid across the device and parameters including the actuation pressure and frequency of the pressurized air as well as the width of the flow channel. Future directions of the study include testing the devices in human subjects to characterize pulse-driven flow across the devices, computational modeling of the devices, and further changes of the device design to optimize the performance of the device. We will also optimize the device design computationally to tailor the device design to specific diabetic patients. Finally, we will incorporate a 3D-printed insulin reservoir into our system for the storage of insulin solution. / Withhold all access to the ETD for 1 year / patent / I hereby certify that, if appropriate, I have obtained and submitted with my ETD a written permission statement from the ower(s) of each third part copyrighted matter to be included in my thesis or dissertation, allowing distribution as specified above. I certify that the version I submitted is the same as that approved by my advisory committee.
36

Mechanical and biochemical stimulation of suspended cells in a microfluidic device probed with dual optical tweezers

Rezvani Boroujeni, Samaneh 17 November 2017 (has links)
No description available.
37

Comparison Study of Nanoparticle and Cyclophosphamide Deposition in Olfactory Region between Microfluidic Device and Nasal Cavity

Fadul, Gabrielle Nicole 18 December 2019 (has links)
No description available.
38

Optical Detector for Microfluidics

Gómez Jiménez, Carlos, Gómez Jiménez, Jaime January 2022 (has links)
This project arose from the need to filter the sampled data and eliminate non-useful information in Serial Crystallography in Microfluidic Device (MFD)by using a portable optical detector placed around the channel. By testing sixteen different configurations, always using an LED as a source and a photodiode as a light sensor, changes in the channel due to the passage of air bubbles were detected. These changes corresponded to a 13,25% in relation to the changes due to light switching, with a gain factor of 10,11V/V. However, it was not sensitive enough to detect when a microcrystal passed through it, although it can detect bubbles and opens the door to design such sensors for these applications in the future.
39

Microfluidic Device for Noninvasive Cell Electrical Stimulation, Extracellular Field Potential Analysis and Surface Charge Detection

Ni, Liwei 15 July 2020 (has links)
No description available.
40

Development of an Angiogenic Tissue-on-a-chip Microenvironment

Stuehr, Eric 01 November 2023 (has links) (PDF)
Preclinical testing is necessary to investigate the safety and efficacy of novel therapeutics before moving to clinical trials, yet approximately 90% of these therapies fail once tested in humans. This has led to increased interest in developing robust preclinical models that accurately mimic the complex human in vivo physiology. Microfluidic devices that can introduce dynamic conditions to 3D cell/organoid cultures, also known as tissue-on-a-chip, have emerged as physiologically relevant in vitro preclinical models that can achieve high throughput screening of therapeutics. The research presented here aimed to develop an angiogenic environment within a novel microfluidic device to stimulate formation of endothelial networks that will eventually be integrated into a vascularized tumor model for screening chemotherapeutics. The novel microfluidic devices were fabricated using photolithography to create a patterned mold, casting polydimethylsiloxane (PDMS) over the mold, and bonding patterned PDMS to a glass slide. Three sets of experiments were then conducted, with each introducing different angiogenic stimuli to human umbilical vein endothelial cells (HUVECs) co-cultured with human dermal fibroblasts (HDFs) within the devices. The first set of experiments sought to develop a standard protocol for plating human cells in the novel microfluidic device and to investigate if the mechanism of nutrient transport and interstitial flow would induce an angiogenic response resulting in endothelial network formation. A working protocol was developed but it was determined that further development of an angiogenic environment within the device was necessary to stimulate endothelial network formation. The second set of experiments investigated if seeding HUVECs in a peripheral channel of the device and introducing a concentration gradient of vascular endothelial growth factor (VEGF) would stimulate endothelial network formation directed by a growth factor gradient, similar to angiogenesis in vivo. This was repeated under hypoxic conditions to more accurately mimic the in vivo angiogenic environment, but significant endothelial network formation was not observed and seeding of HUVECs in the peripheral channel presented no perceptible improvements. The final set of experiments investigated if v returning HUVECs to the center chamber in local co-culture with HDFs and exposing devices to hypoxic conditions would provide the necessary angiogenic environment to stimulate endothelial network formation within the microfluidic device. Lack of quantifiable endothelial network formation in the final set of experiments led to an analysis of 3D HUVEC colony formation, however, no statistically significant trends were discovered. Even though no significant differences were found, these experiments succeeded in developing a protocol for plating human cells in the novel microfluidic device that can be translated to the tumor side of the Microphysiological Systems lab. From these experiments we can also conclude that co-cultures of HUVECs and HDFs can survive and form into colonies within the novel microfluidic device but additional angiogenic stimuli are necessary to develop robust endothelial networks. Based on the current literature and knowledge gained throughout the experiments presented here, several suggestions are presented to potentially stimulate angiogenesis and develop endothelial networks in the device such as increasing cell densities, varying length of incubation, introducing mediators of angiogenesis like nitric oxide, and addition of tumor cells.

Page generated in 0.0573 seconds