Spelling suggestions: "subject:"microlithography."" "subject:"microlitvhography.""
71 |
Micro/nano fabrication of polymeric materials by DMD-based micro-stereolithography and photothermal imprintingLu, Yi 28 August 2008 (has links)
Not available
|
72 |
Fabrication, packaging, and application of micromachined hollow polymer needle arraysWang, Po-Chun 13 January 2014 (has links)
Micromachined needles have been shown to successfully transport biological molecules into the body with minimal invasiveness and pain, following the insertion of needles into the skin. The aim of this research is to demonstrate that micromachined hollow polymer needle arrays fabricated using UV lithography into micromolds, a potential batch-manufacturable process, can exhibit comparable insertion and injection performance to conventional hypodermic needles for drug delivery into skin.
A dual-exposure-and-single-development process flow is proposed for the above-mentioned UV lithography into micromolds approach to construct a pyramidal-tip hollow microneedle array with an integral baseplate and fluidic manifold. The developed process ultimately resulted in the ability to fabricate a 10×10 array of hollow SU-8 microneedles measuring 825 μm in height, 400 μm in width, and possessing a lumen of 120 μm in diameter. The tip diameter of the microneedles ranges from 15 μm to 25 μm. The insertion force of single needles characterized using excised porcine skin as a substrate is 2.4±1.2 N. Nevertheless, the high insertion force of 2.4 N per needle may cause a significant concern when a large number of needles are required to insert into skin for drug delivery.
Conventional hypodermic needles have two key structural characteristics: a sharp beveled tip and a large side-terminated lumen. Integration of these two key characteristics of hypodermic needles into microneedle design can potentially enhance microneedle performance. To reduce the insertion force and to incorporate the two key characteristics of hypodermic needles into the design of microneedles, a new needle tip design, namely the hypodermic-needle-like design, is presented. A 6×6 array of hypodermic-needle-like microneedles of 1 mm in height, approximate 350 μm in width, and with a lumen of 150 μm in diameter is demonstrated with successful insertion of the needle array into skin and an 85% lumen openness yield. The insertion force is significantly reduced by an order of magnitude with the new needle tip design and is 0.275±0.113 N per needle, comparable to that of hypodermic needles, i.e., 0.284±0.059 N. The hypodermic-needle-like microneedles exhibit a margin of safety of 180 for successful needle insertion into skin prior to needle fracture. A successful manual fluid injection into skin using single microneedle is demonstrated.
The micromachined hypodermic-needle-like polymer needle arrays presented in this dissertation are fabricated using UV lithography into micromolds, a potentially batch-manufacturable process, and exhibit comparable insertion performance to conventional hypodermic needles. Injection capability into skin is also demonstrated with a hypodermic-needle-like microneedle, illustrating the utility of these devices.
|
73 |
Micro/nano fabrication of polymeric materials by DMD-based micro-stereolithography and photothermal imprintingLu, Yi, January 1900 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2006. / Vita. Includes bibliographical references.
|
74 |
GCA 4800 DSW wafer stepper /Comard, Matthew J. January 1988 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 1988. / Typescript. Includes bibliographical references (leaves 94-95).
|
75 |
Magnetic field enhancement of Coulomb blockade conductance oscillations in metal-metal oxide double barrier tunnel devices fabricated using atomic force microscope nanolithography /Wiemeri, Jeffrey Charles, Shih, Chih-Kang, January 2005 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Supervisor: Chih-Kang Ken Shih. Vita. Includes bibliographical references.
|
76 |
Nanolithography on thin films using heated atomic force microscope cantileversSaxena, Shubham. January 2006 (has links)
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2007. / King, William Paul, Committee Chair ; Henderson, Clifford L, Committee Co-Chair ; Gall, Ken, Committee Member.
|
77 |
Design of an inverted microstereolithography systm using uv lightWalsh, Casey M. 01 October 2003 (has links)
No description available.
|
78 |
Modeling and process planning for exposure controlled projection lithographyJariwala, Amit Shashikant 02 April 2013 (has links)
A novel approach to microfabrication based on stereolithography was presented. This fabrication process is referred to as, ‘Exposure Controlled Projection Lithography’ (ECPL). In the ECPL process, incident radiation, patterned by a dynamic mask, passes through a transparent substrate to cure photopolymer resin. By controlling the amount of exposure, the height field of the cured film can be controlled. An ECPL system was designed and assembled. Factors affecting the accuracy of the ECPL process in fabricating micron shaped features were identified and studied. A real-time in-situ photopolymerization monitoring system was designed and assembled within the ECPL system to identify the sources of variations present in the system. Parts are fabricated from the ECPL process because of polymerization (or cross-linking) of monomer resin using light energy. Photopolymerization is a complex process involving coupling between several phenomena. This process was modeled by utilizing an understanding of the known polymerization reaction kinetics with incorporating the effects of oxygen inhibition and diffusion. A material response model and a simulation tool to estimate the shape of a cured part resulting from photopolymerization was created. This model was used to formulate a process-planning method to estimate the manufacturing process inputs required to cure a part of desired shape and dimensions. The process planning method was validated through simulations and experiments.
|
79 |
Rendering for Microlithography on GPU HardwareIwaniec, Michel January 2008 (has links)
Over the last decades, integrated circuits have changed our everyday lives in a number of ways. Many common devices today taken for granted would not have been possible without this industrial revolution. Central to the manufacturing of integrated circuits is the photomask used to expose the wafers. Additionally, such photomasks are also used for manufacturing of flat screen displays. Microlithography, the manufacturing technique of such photomasks, requires complex electronics equipment that excels in both speed and fidelity. Manufacture of such equipment requires competence in virtually all engineering disciplines, where the conversion of geometry into pixels is but one of these. Nevertheless, this single step in the photomask drawing process has a major impact on the throughput and quality of a photomask writer. Current high-end semiconductor writers from Micronic use a cluster of Field-Programmable Gate Array circuits (FPGA). FPGAs have for many years been able to replace Application Specific Integrated Circuits due to their flexibility and low initial development cost. For parallel computation, an FPGA can achieve throughput not possible with microprocessors alone. Nevertheless, high-performance FPGAs are expensive devices, and upgrading from one generation to the next often requires a major redesign. During the last decade, the computer games industry has taken the lead in parallel computation with graphics card for 3D gaming. While essentially being designed to render 3D polygons and lacking the flexibility of an FPGA, graphics cards have nevertheless started to rival FPGAs as the main workhorse of many parallel computing applications. This thesis covers an investigation on utilizing graphics cards for the task of rendering geometry into photomask patterns. It describes different strategies that were tried and the throughput and fidelity achieved with them, along with the problems encountered. It also describes the development of a suitable evaluation framework that was critical to the process.
|
80 |
Inkless Soft Lithography: Utilizing Immobilized Enzymes and Small Molecules to Pattern Self-Assembled Monolayers Via Catalytic Microcontact PrintingVogen, Briana Noelle January 2010 (has links)
<p>During the past two decades, soft lithographic techniques that circumvent the limitations of photolithography have emerged as important tools for the transfer of patterns with sub-micron dimensions. Among these techniques, microcontact printing (uCP) has shown special promise. In uCP, an elastomeric stamp is first inked with surface-reactive molecules and placed in contact with an ink-reactive surface, resulting in pattern transfer in the form of self-assembled monolayers in regions of conformal contact. The resolution in uCP is ultimately limited to the diffusion of ink and the elastomechanical properties of the bulk stamping material. </p>
<p>One way to improve resolution is to eliminate diffusion by using inkless methods for pattern transfer. Inkless catalytic-uCP uses a chemical reaction between a stamp-immobilized catalyst and surface bearing cognate substrate to transfer pattern in the areas of conformal contact. By using pre-assembled cognate surfaces, the approach extends the range of surfaces readily amenable to patterning while obviating diffusive resolution limits imposed by traditional uCP. </p>
<p>In this thesis, we report two methods using inkless catalytic uCP: biocatalytic-uCP utilizes an immobilized enzyme as a catalyst whereas catalytic-uCP utilizes an immobilized small molecule as a catalyst, such as an acid or base. Both catalytic techniques demonstrate pattern transfer at the microscale while using unconventional, acrylate-based stamp materials. Previous results produced with catalytic-uCP have shown pattern transfer with sub-50 nm edge resolution. In this demonstration of catalytic-uCP, we use the technique to demonstrate a bi-layered patterning technique for H-terminated silicon, the foremost material in semi-conductor fabrication. This technique simultaneously protects the underlying silicon surface from degradation while a highly-reactive organic overlayer remains patternable by acidic-functionalized PU stamps. Lines bearing widths as small as 150 nm were reproduced on the reactive SAM overlayer, which would not be possible without circumvention of diffusion. Before and after patterning, no oxidation of the underlying silicon was observed, preserving desired electronic properties throughout the whole process. This bi-patterning technique could be extended to other technologically-relevant surfaces for further application in organic-based electronic devices and other related technologies.</p> / Dissertation
|
Page generated in 0.0763 seconds