• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Génération de particules de polymères à structure contrôlée par la microfluidique / Polymer particles generation with structures controlled by microfluidics

Marcati, Alain 27 November 2009 (has links)
Ces travaux de recherche s’inscrivent d’une part dans une thématique d’intensification de procédés : la synthèse des particules de polymères est classiquement réalisée en batch en présence de solvants, tensioactifs et agents stabilisateurs. Dans ces conditions, les particules générées ont une distribution de taille assez large. Pour palier à celà, la synthèse des particules est envisagée en continu dans des microcanaux avec l’eau en phase dispersante, sans ajout de tensioactifs et sans traitement de surface des parois du microréacteur. L’utilisation de l’échelle micrométrique va ainsi procurer une très grande régularité aux dispersions générées et empêcher la coalescence des gouttelettes au sein du milieu qui provoque la polydispersité des particules dans les cuves agitées. Nous avons donc développé des outils microfluidiques et étudié l’hydrodynamique dans ces microréacteurs pour obtenir la génération de gouttelettes sphériques afin de synthétiser des billes d’un diamètre inférieur à la centaine de microns par polymérisation directe des gouttes. Ces travaux visent d’autre part, la production de nouveaux matériaux puisque l’objectif était non seulement de produire des particules simples mais d’envisager des structures plus complexes telles que des particules multicouches de type oignon pour lesquelles on pourrait choisir la nature et l’épaisseur de chaque couche. Nous avons donc travaillé sur la manipulation de l’écoulement après polymérisation pour envisager des méthodes d’enrobage des particules coeurs. Enfin nous avons trouvé une nouvelle application liée à la synthèse de particules en microcanaux : la création de colonnes chromatographiques remplies de particules. / This work is full part of process intensification : polymer particles are usually synthesized in batch reactors with solvents, surfactants and stabilizers. In these conditions, particles are obtained with large size distribution. In order to reduce size distribution, particles synthesis is then studied in a continuous process in microchannels in water, without surfactants nor surface treatment of microreactors’ walls. The micron-size scale provides indeed better control of monomer dispersion and prevents droplets coalescence which is the major reason of polydispersity in stirred tank reactors.That is why we have developped microfluidic tools and studied hydrodynamics and droplet generation into microreactors in order to synthetize polymer beads smaller than a hundred microns by direct polymerization of spherical droplets. This work also deals with new material creaction : the objective was also to produce onion-like structures for whom we could choose each layer chemical nature and thickness. We have then analysed manipulation of partciles flow to determine ways of encapsulating core particles. Finally, we also developped a new application related to polymer beads into microchannels : the creation of micropacked chromatography columns
2

Modeling, Simulation and Optimization of Multiphase Micropacked-Bed Reactors and Capillary Sonoreactors

Navarro-Brull, Francisco J. 20 September 2018 (has links)
In the last decades, miniaturized flow chemistry has promised to bring the benefits of process intensification, continuous manufacturing and greener chemistry to the fine chemical industry. However, miniaturized catalytic processes where gas, liquid, and solids are involved have always been impeded by two main drawbacks: multiphase-flow maldistribution (i.e. gas channeling) and clogging of capillary reactors. In this thesis, first principle models have been used to capture the complexity of multiphase flow in micropacked-bed reactors, which can suffer from poor and unpredictable mass-transfer performance. When the particle size ranges 100 µm in diameter, capillary and viscous forces control the hydrodynamics. Under such conditions, the gas —and not the liquid— flows creating preferential channels that cause poor radial dispersion. Experimental observations from the literature were reproduced to validate a physical-based modeling approach, the Phase Field Method (PFM). This simulation strategy sheds light on the impact of the micropacked-bed geometry and wettability on the formation of preferential gas channels. Counterintuitively, to homogenize the two-phase flow hydrodynamics and reduce radial mass-transfer limitations, solvent wettability of the support needs to be restricted, showing best performance when the contact angle ranges 60° and capillary forces are still dominant. Visualization experiments showed that ultrasound irradiation can also be used to partially fluidized the bed and modify the hydrodynamics. Under sonication, residence time distributions (RTD) in micropacked-bed reactors revealed a two-order-of-magnitude reduction in dispersion, allowing for nearly plug-flow behavior at high gas and liquid flow rates. At a reduced scale, surfaces vibrating with a low amplitude were shown to fluidize, prevent and solve capillary tube blockage problems, which are commonly found in the fine chemical industry for continuous product synthesis. The modeling and simulation strategy used in this thesis, enables a fast prototyping methodology for the proper acoustic design of sonoreactors, whose scale-up was achieved by introducing slits in sonotrodes. In addition, a patent-pending helicoidal capillary sonoreactor has shown to transform longitudinal vibrating modes into radial and torsional modes, pioneering a new range of chemistry able to handle a high concentration of particles. The contributions of this thesis made in the fields of reaction engineering and process intensification have demonstrated how computational methods and experimental techniques in other areas of research can be used to foster innovation at a fast pace.

Page generated in 0.0466 seconds