Spelling suggestions: "subject:"microscopie raman confocal"" "subject:"microscopie saman confocal""
1 |
In vitro enamel subsurface lesions : characterization and treatment / Lésions carieuses de l'émail in vitro : caractérisation et traitementAl-Obaidi, Rand 12 September 2018 (has links)
Les taches blanches sont liées à l'hypominéralisation sous la surface de l'émail et sont la 1ère étape du développement de la carie dentaire. La détection précoce des caries dentaires naissantes avant qu'elles n'atteignent le stade de la cavitation offre une opportunité pour des soins dentaires efficaces. Pour réaliser les objectifs de cette étude qui sont de renforcer l'idiome des soins minimalement invasifs, nous avons identifié un modèle de cycle de pH modifié qui permet d’imiter les conditions intra-buccales qui conduisent à la formation de lésions de type tache blanche, dans un court laps de temps. Des techniques optiques non invasives, comme la microscopie Raman confocale et la microscopie multiphotonique, ont été utilisées dans cette étude pour détecter de petits changements dans la composition chimique de l'émail in vitro.De plus, la technique de nano-indentation a été appliquée pour étudier les changements dans les propriétés mécaniques de l'émail et les relier à ceux affectant sa composition chimique après l'induction des caries, afin d‘ajouter de la spécificité chimique-mécanique aux informations sur les lésions sous-surface de l'émail. Les résultats obtenus démontrent un grand potentiel pour les techniques examinées, fournissant une base pour des applications intéressantes dans le diagnostic clinique de différentes pathologies dentaires. Pour résoudre le problème du traitement des lésions primitives sans intervention chirurgicale, l'efficacité de la crème GC Tooth Mousse et du dentifrice contenant de la nano-hydroxyapatite «KAREX» dans l'amélioration de la reminéralisation de l'émail déminéralisé par la localisation du phosphate de calcium amorphe à la surface de la dent a été inspectée. L'étude a indiqué le manque de preuves fiables soutenant l'efficacité des agents reminéralisants dans le traitement des taches blanches. Ce travail doit être poursuivi par d'autres études in-vitro et par des études cliniques. / White spot lesion is the subsurface hypomineralization of enamel indicating the 1st stage of dental caries development. Early detection of incipient dental caries before it reaches the stage of cavitation offers an opportunity for effective dental care. The objectives of this study were to strengthen the idiom of minimally invasive treatment. In order to achieve the specified goals; we have identified a modified pH cycling model that can mimic the intraoral conditions leading to white spot lesions formation in a short time. In addition, non-invasive optical techniques, such as confocal Raman microscopy and multiphoton microscopy were used in this study to detect small changes in the enamel chemical composition in vitro.Furthermore, nano-indentation technique was used to detect the changes in the mechanical properties of enamel and relate them to those affecting its chemical composition after caries induction in order to add chemico-mechanical specificity in providing important information about subsurface lesions in enamel. The obtained results demonstrate a great potential for the examined techniques, providing a basis for interesting applications in the clinical diagnosis of various pathological conditions in dentistry. To treatment the incipient carious lesions non-invasively, the effectiveness of GC Tooth Mousse cream and nHA containing-dentifrice "KAREX" in the remineralization of demineralized enamel through localizing amorphous calcium phosphate at tooth surface has been inspected. The study indicated a lack of reliable evidence supporting the efficacy of remineralizing agents in the treatment of white spot lesions. Within the limitations of this study, further laboratory studies together with clinical research are therefore required to increase the available knowledge on this prevalent subject.
|
2 |
Guides d’ondes dans un cristal de niobate de lithium périodiquement polarisé : fabrication et étude par des techniques de microscopie à sonde locale / Creation of optical waveguides with periodical domain structures in lithium niobate single crystals and their study by scanning probe microscopy methodsNeradovskiy, Maxim 17 June 2016 (has links)
Nous avons étudié l'influence de la fabrication de guides d'ondes optiques par échange protonique doux(SPE) sur les cristaux de niobate de lithium (LN) polarisé périodiquement et nous avons montré que,dans certains cas, ce processus conduit à la création de nanodomaines en surface. Ces nanodomaines enforme d'aiguille peuvent être responsables de la réduction de l'efficacité de conversion non linéaireobservée dans les guides qui sont affectés. Nous avons également étudié l'influence de différents typesd'échange protonique sur la formation, par application d'un champ électrique, de domaines dans le LNcongruent. Cette étude montre que le seuil de nucléation peut être fortement réduit par la présence duguide d'onde et que l'apparition et le développement des domaines en forme de traits est fortementmodifiée. Elle montre également que la fusion des nanodomaines existants au voisinage des parois dedomaine aboutit à la formation de parois élargies et de domaines en forme de dendrites. En irradiantavec un faisceau d'électrons la surface Z- d'un échantillon de LN préalablement soumis à un échangeprotonique doux et recouvert d'une couche de résine électronique, nous avons réussi à former desdomaines avec des formes arbitraires. Par cette technique, nous avons fabriqué des domainespériodiques d'excellente qualité dans des cristaux présentant des guides canaux SPE. Des expériences degénération de deuxième harmonique dans ces guides nous ont permis d'obtenir des efficacités deconversion de 48%/W.cm2 ce qui est conforme aux prédictions ainsi que la forme des spectres d'accordde phase que nous avons observés. Ceci démontre tout l'intérêt de ce processus / The investigation of influence of the soft proton exchange (SPE) optical waveguide (WG) creation onperiodically poled lithium niobate (PPLN) has been done. It has been shown that the WG fabricationprocess can induce the formation of needle like nanodomains, which can be responsible for thedegradation of the nonlinear response of the WG created in PPLN crystals. The domain structure (DS)evolution has been studied in congruent lithium niobate (LN) crystals with surface layers modified bythree different proton exchange techniques. The significant decrease of the nucleation threshold fieldand qualitative change of domain rays nucleation and growth have been revealed. The formation of abroad domain boundary and dendrite domain structure as a result of nanodomains merging in front ofthe moving rays has been demonstrated. The formation of DS in LN with SPE by irradiation of coveredby electron resist polar surface of LN has been investigated. Formation of domains with arbitrary shapesas a result of discrete switching has been revealed. Finally, it has been demonstrated that electron beamirradiation of lithium niobate crystals with surface resist layer can produce high quality periodical domainpatterns after channel waveguide fabrication. Nonlinear characterizations show that the conversionefficiencies and the phase matching spectra conform to theoretical predictions, indicating that thiscombination presents a great interest for device fabrication. Second harmonic generation withnormalized nonlinear conversion efficiency up to 48%/(W cm2) has been achieved in such waveguides
|
3 |
Spectroscopie Raman et microfluidique : application à la diffusion Raman exaltée de surfaceDelhaye, Caroline 17 December 2009 (has links)
Ce mémoire porte sur la mise au point de plateforme microfluidique couplée à la microscopie Raman confocale, utilisée dans des conditions d’excitation de la diffusion Raman (diffusion Raman exaltée de surface), dans le but d’obtenir une détection de très haute sensibilité d’espèces moléculaires sous écoulement dans des canaux de dimensions micrométriques. Ce travail a pour ambition de démontrer la faisabilité d’un couplage microscopie Raman/microfluidique en vue de la caractérisation in-situ et locale, des espèces et des réactions mises en jeu dans les fluides en écoulement dans les microcanaux. Nous avons utilisé un microcanal de géométrie T, fabriqué par lithographie douce, dans lequel sont injectées, à vitesse constante, des nanoparticules métalliques d’or ou d’argent dans une des deux branches du canal et une solution de pyridine ou de péfloxacine dans l’autre branche. La laminarité et la stationnarité du processus nous ont permis de cartographier la zone de mélange et de mettre en évidence l’exaltation du signal de diffusion Raman de la pyridine et de la péfloxacine, obtenue grâce aux nanoparticules métalliques, dans cette zone d’interdiffusion. L’enregistrement successif de la bande d’absorption des nanoparticules d’argent (bande plasmon) et du signal de diffusion Raman de la péfloxacine, en écoulement dans un microcanal, nous a permis d’établir un lien entre la morphologie des nanostructures métalliques, et plus précisément l’état d’agrégation des nanoparticules d’argent, et l’exaltation du signal Raman de la péfloxacine observé. Nous avons alors modifié la géométrie du canal afin d’y introduire une solution d’électrolyte (NaCl et NaNO3) et de modifier localement la charge de surface des colloïdes d’argent en écoulement. Nous avons ainsi confirmé que la modification de l’état d’agrégation des nanoparticules d’argent, induite par l’ajout contrôlé de solutions d’électrolytes, permet d’amplifier le signal SERS de la péfloxacine et d’optimiser la détection en microfluidique. Enfin, nous avons développé une seconde approche qui consistait à mettre en place une structuration métallisée des parois d’un microcanal. Nous avons ainsi démontré que la fonctionnalisation chimique de surface via un organosilane (APTES) permettait de tapisser le canal avec des nanoparticules d’argent et d’amplifier le signal Raman des espèces en écoulement dans ce même microcanal. / This thesis focuses on the development of a microfluidic platform coupled with confocal Raman microscopy, used in excitation conditions of Raman scattering (Surface enhanced Raman scattering, SERS) in order to gain in the detection sensitivity of molecular species flowing in channels of micrometer dimensions. This work aims to demonstrate the feasibility of coupling Raman microscopy / microfluidics for the in situ and local characterization of species and reactions taking place in the fluid flowing in microchannels. We used a T-shaped microchannel, made by soft lithography, in which gold or silver nanoparticles injected at constant speed, in one of the two branches of the channel and a solution of pyridine or pefloxacin in the other one. The laminar flow and the stationarity of the process allowed us to map the mixing zone and highlight the enhancement of the Raman signal of pyridine and pefloxacin, due to the metallic nanoparticles, in the interdiffusion zone. The recording of the both absorption band of the silver nanoparticles (plasmon band) and the Raman signal of pefloxacin, flowing in microchannel, allowed us to establish a link between the shape of the metallic nanostructure, and more precisely the silver nanoparticle aggregation state, and the enhancement of the Raman signal of pefloxacin observed. We then changed the channel geometry to introduce an electrolyte solution (NaCl and NaNO3) and locally modify the surface charge of the colloids. We have put in evidence that the change of the silver nanoparticle aggregation state, induced by the controlled addition of electrolyte solutions, could amplify the SERS signal of pefloxacin and thus optimizing the detection in microfluidics. At last, we established second a approach that consists in the metallic structuring of microchannel walls. This has shown that the surface chemical functionalization through organosilanes (APTES) allowed the pasting of the channel with silver nanoparticles, thus amplifying the Raman signal of the species flowing within the same microchannel.
|
Page generated in 0.1125 seconds