• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 11
  • 11
  • 9
  • 9
  • 9
  • 9
  • 9
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Metodologia de micrositing para terrenos complexos baseada em CFD com softwares livres de código aberto

Radünz, William Corrêa January 2018 (has links)
Micrositing é o campo do posicionamento estratégico dos aerogeradores na área do parque eólico visando a con guração mais promissora em termos econômicos ou de produção. Dado que em terrenos complexos as características do vento variam na área do parque eólico de forma não-linear, emprega-se a modelagem numérica do vento por CFD para extrapolar os dados medidos para toda a região. O presente trabalho consiste no desenvolvimento de uma metodologia de micrositing em terrenos complexos capaz de auxiliar no projeto do layout e seleção do tipo e altura de eixo do aerogerador que maximiza o fator de capacidade (FC) utilizando softwares livres de código aberto. A metodologia consiste na simulação do vento para várias direções de incidência, assimilação das medições, convers ão de velocidade em densidade de potência, ponderação por frequência de ocorrência de cada direção, sobreposição, seleção das coordenadas dos aerogeradores e cálculo do FC para diversas con gurações de tipo e altura de eixo dos aerogeradores. Veri cação, validação e seleção das constantes do modelo de turbulência é realizada anteriormente às simulações Veri cou-se que o modelo k- produziu um escoamento horizontalmente homog êneo e que o melhor desempenho na validação foi obtido com a escolha de constantes para escoamentos atmosféricos. A metodologia foi demonstrada em uma região de terreno complexo em que o FC do parque eólico proposto apresentou caráter convergente com o re no progressivo da malha, porém oscilatório em termos do número de direções simuladas. Por m, obteve-se FC brutos superiores a 40% para as cinco melhores con gurações e de aproximadamente 52% no melhor caso, indicando bom potencial eólico. A metodologia foi capaz de preencher uma lacuna na literatura cientí ca de micrositing ao possibilitar o planejamento do layout, tipo de aerogerador e altura de eixo, bem como a estimativa da produção e FC brutos da usina em terrenos complexos. Além disso, a estrutura de trabalho com o uso de recursos computacionais livres e de código aberto reforça o caráter de desenvolvimento contínuo, compartilhamento e transparência da metodologia. / Micrositing is the eld concerned with the strategic positioning of wind turbines in the wind farm area aimed at the most promissing con guration economically- or yield-wise. Given the wind characteristics vary non-linearly across the wind farm area in complex terrain, numerical wind modeling with CFD is employed to extrapolate the measured data to the whole site. The present work consists of the development of a micrositing methodology in complex terrain capable of assisting the layout project and selection of wind turbine type and hub height that maximizes the capacity factor (CF) using free and open-source software. The methodology consists of simulating the wind for a number of incoming directions, assimilation of measurements, conversion of wind speed into power density, weighing by frequency of occurrence of each direction, overlapping, selection of wind turbine coordinates and CF calculation for a number of wind turbine types and hub heights. Veri cation, validation and selection of turbulence model constants is performed previous to the simulations It was veri ed that the k- model is able to sustain horizontally-homogeneous ow and that the classic atmospheric ow constants performed best in the validation step. The methodology was demonstrated in a complex terrain region for which the proposed wind farm CF showed converging behavior with progressive mesh re nement, however oscillating with the number of wind directions simulated. Ultimately, CF greater than 40% were obtained with the ve best performing con gurations and approximately 52% in the best case scenario, suggesting good wind potential. The methodology was capable of lling a major gap in the scienti c literature of micrositing for allowing the layout planning, selection of wind turbine type and hub height, as well as gross production estimates and CF for the wind farm in complex terrain. Additionally, the free and open-source-based framework strengthens the continuous development, sharing and transparency of the methodology.
2

Análise da aplicação da dinâmica dos fluidos computacional para avaliação do potencial eólico em terrenos complexos

Freitas Filho, Dalmedson Gaúcho Rocha de January 2012 (has links)
Nos últimos anos, a utilização da energia eólica vem apresentando uma tendência de aumento. Um dos principais aspectos para determinar a viabilidade técnica e econômica de uma instalação eólica é a avaliação precisa da distribuição das velocidades de vento na área de aproveitamento. A instalação de turbinas eólicas em áreas com terrenos complexos tem determinado a necessidade de aprimorar a metodologia de previsão do campo de velocidades do vento visando à melhor determinação da distribuição dos equipamentos e aproveitamento do potencial existente. Neste contexto, esta dissertação apresenta um estudo sobre a aplicação da Dinâmica dos Fluidos Computacional - CFD para avaliação do potencial eólico e o comportamento do vento sobre um modelo de uma superfície de topografia complexa. Resultados numéricos com diferentes alternativas de modelagem do problema são comparados com dados de um experimento em túnel de vento, visando determinar a metodologia adequada para avaliação do problema proposto. As simulações numéricas do escoamento de ar sobre o terreno são realizadas com o uso do programa ANSYS-Fluent 13.0, que utiliza o método de volumes finitos para a solução das equações de Navier-Stokes com médias de Reynolds (RANS). O estudo é dividido em três casos. No primeiro caso, a rugosidade superficial é negligenciada e o problema de fechamento é contornado com a utilização do modelo de turbulência k ω SST. No segundo caso, a rugosidade superficial é estipulada de acordo com modelo utilizado no ensaio experimental e o problema de fechamento é contornado com a utilização do modelo de turbulência k - ε. No terceiro caso, a rugosidade superficial também é estipulada de acordo com modelo utilizado no ensaio experimental e o problema de fechamento é contornado com a utilização do modelo de turbulência k ω SST. Os resultados das simulações são apresentados de forma que se possa observar o perfil de velocidades adimensional sobre a superfície da geometria para cada caso, para que seja possível verificar o campo de velocidades sobre a superfície em estudo. O resultado das simulações são comparados com dados experimentais obtidos em túnel de vento: verifica-se um comportamento similar nos perfis de velocidade alcançados. Através da análise do campo de velocidades sobre a superfície em estudo, pode-se obter a localização que apresenta o melhor potencial eólico de uma região. Este processo é conhecido como Micrositing. / In recent years the use of wind energy has shown an increasing. A key aspect to determine the technical and economic viability for the wind power plant is the accurate assessment of the distribution of wind speeds in the area of utilization. The installation of wind turbines in areas with complex terrain has determined the necessity of improve the methodology for the prediction of wind velocity field in order to better determine the distribution of equipment and utilization of existing potential. In this context this work presents a study on the application of computational fluid dynamics to evaluate the wind potential and the behavior of the wind on a model of a complex surface topography. Numerical results with different alternatives for modeling the problem are compared with data from an experiment in wind tunnel to determine the appropriate methodology for evaluation of the problem. The numerical simulations of the air flow over the terrain are performed using the ANSYS Fluent 13.0 which uses the finite volumes method for solving the Reynolds Averaged Navier Stokes (RANS) equation. The study is divided in three cases. In the first one, the surface roughness is neglected and the closure problem is solved by k ω SST turbulence model. In the second case, the surface roughness is stipulated according to the model used in the experimental test and the closure problem is solved by k ε turbulence model. In the third case, the surface roughness is stipulated according to the model used in the experimental test and the closure problem is solved by k ω SST turbulence model. The simulation results are presented so that one can observe the dimensionless velocity profile on the surface in each case in order to check the velocity field on the surface under investigation. These results are compared with experimental data obtained in wind tunnel which shows consistency with them. By analyzing the velocity field on the surface, it can be verified that the exact location where there is the best wind potential of a region. This process is called Micrositing.
3

Metodologia de micrositing para terrenos complexos baseada em CFD com softwares livres de código aberto

Radünz, William Corrêa January 2018 (has links)
Micrositing é o campo do posicionamento estratégico dos aerogeradores na área do parque eólico visando a con guração mais promissora em termos econômicos ou de produção. Dado que em terrenos complexos as características do vento variam na área do parque eólico de forma não-linear, emprega-se a modelagem numérica do vento por CFD para extrapolar os dados medidos para toda a região. O presente trabalho consiste no desenvolvimento de uma metodologia de micrositing em terrenos complexos capaz de auxiliar no projeto do layout e seleção do tipo e altura de eixo do aerogerador que maximiza o fator de capacidade (FC) utilizando softwares livres de código aberto. A metodologia consiste na simulação do vento para várias direções de incidência, assimilação das medições, convers ão de velocidade em densidade de potência, ponderação por frequência de ocorrência de cada direção, sobreposição, seleção das coordenadas dos aerogeradores e cálculo do FC para diversas con gurações de tipo e altura de eixo dos aerogeradores. Veri cação, validação e seleção das constantes do modelo de turbulência é realizada anteriormente às simulações Veri cou-se que o modelo k- produziu um escoamento horizontalmente homog êneo e que o melhor desempenho na validação foi obtido com a escolha de constantes para escoamentos atmosféricos. A metodologia foi demonstrada em uma região de terreno complexo em que o FC do parque eólico proposto apresentou caráter convergente com o re no progressivo da malha, porém oscilatório em termos do número de direções simuladas. Por m, obteve-se FC brutos superiores a 40% para as cinco melhores con gurações e de aproximadamente 52% no melhor caso, indicando bom potencial eólico. A metodologia foi capaz de preencher uma lacuna na literatura cientí ca de micrositing ao possibilitar o planejamento do layout, tipo de aerogerador e altura de eixo, bem como a estimativa da produção e FC brutos da usina em terrenos complexos. Além disso, a estrutura de trabalho com o uso de recursos computacionais livres e de código aberto reforça o caráter de desenvolvimento contínuo, compartilhamento e transparência da metodologia. / Micrositing is the eld concerned with the strategic positioning of wind turbines in the wind farm area aimed at the most promissing con guration economically- or yield-wise. Given the wind characteristics vary non-linearly across the wind farm area in complex terrain, numerical wind modeling with CFD is employed to extrapolate the measured data to the whole site. The present work consists of the development of a micrositing methodology in complex terrain capable of assisting the layout project and selection of wind turbine type and hub height that maximizes the capacity factor (CF) using free and open-source software. The methodology consists of simulating the wind for a number of incoming directions, assimilation of measurements, conversion of wind speed into power density, weighing by frequency of occurrence of each direction, overlapping, selection of wind turbine coordinates and CF calculation for a number of wind turbine types and hub heights. Veri cation, validation and selection of turbulence model constants is performed previous to the simulations It was veri ed that the k- model is able to sustain horizontally-homogeneous ow and that the classic atmospheric ow constants performed best in the validation step. The methodology was demonstrated in a complex terrain region for which the proposed wind farm CF showed converging behavior with progressive mesh re nement, however oscillating with the number of wind directions simulated. Ultimately, CF greater than 40% were obtained with the ve best performing con gurations and approximately 52% in the best case scenario, suggesting good wind potential. The methodology was capable of lling a major gap in the scienti c literature of micrositing for allowing the layout planning, selection of wind turbine type and hub height, as well as gross production estimates and CF for the wind farm in complex terrain. Additionally, the free and open-source-based framework strengthens the continuous development, sharing and transparency of the methodology.
4

Análise da aplicação da dinâmica dos fluidos computacional para avaliação do potencial eólico em terrenos complexos

Freitas Filho, Dalmedson Gaúcho Rocha de January 2012 (has links)
Nos últimos anos, a utilização da energia eólica vem apresentando uma tendência de aumento. Um dos principais aspectos para determinar a viabilidade técnica e econômica de uma instalação eólica é a avaliação precisa da distribuição das velocidades de vento na área de aproveitamento. A instalação de turbinas eólicas em áreas com terrenos complexos tem determinado a necessidade de aprimorar a metodologia de previsão do campo de velocidades do vento visando à melhor determinação da distribuição dos equipamentos e aproveitamento do potencial existente. Neste contexto, esta dissertação apresenta um estudo sobre a aplicação da Dinâmica dos Fluidos Computacional - CFD para avaliação do potencial eólico e o comportamento do vento sobre um modelo de uma superfície de topografia complexa. Resultados numéricos com diferentes alternativas de modelagem do problema são comparados com dados de um experimento em túnel de vento, visando determinar a metodologia adequada para avaliação do problema proposto. As simulações numéricas do escoamento de ar sobre o terreno são realizadas com o uso do programa ANSYS-Fluent 13.0, que utiliza o método de volumes finitos para a solução das equações de Navier-Stokes com médias de Reynolds (RANS). O estudo é dividido em três casos. No primeiro caso, a rugosidade superficial é negligenciada e o problema de fechamento é contornado com a utilização do modelo de turbulência k ω SST. No segundo caso, a rugosidade superficial é estipulada de acordo com modelo utilizado no ensaio experimental e o problema de fechamento é contornado com a utilização do modelo de turbulência k - ε. No terceiro caso, a rugosidade superficial também é estipulada de acordo com modelo utilizado no ensaio experimental e o problema de fechamento é contornado com a utilização do modelo de turbulência k ω SST. Os resultados das simulações são apresentados de forma que se possa observar o perfil de velocidades adimensional sobre a superfície da geometria para cada caso, para que seja possível verificar o campo de velocidades sobre a superfície em estudo. O resultado das simulações são comparados com dados experimentais obtidos em túnel de vento: verifica-se um comportamento similar nos perfis de velocidade alcançados. Através da análise do campo de velocidades sobre a superfície em estudo, pode-se obter a localização que apresenta o melhor potencial eólico de uma região. Este processo é conhecido como Micrositing. / In recent years the use of wind energy has shown an increasing. A key aspect to determine the technical and economic viability for the wind power plant is the accurate assessment of the distribution of wind speeds in the area of utilization. The installation of wind turbines in areas with complex terrain has determined the necessity of improve the methodology for the prediction of wind velocity field in order to better determine the distribution of equipment and utilization of existing potential. In this context this work presents a study on the application of computational fluid dynamics to evaluate the wind potential and the behavior of the wind on a model of a complex surface topography. Numerical results with different alternatives for modeling the problem are compared with data from an experiment in wind tunnel to determine the appropriate methodology for evaluation of the problem. The numerical simulations of the air flow over the terrain are performed using the ANSYS Fluent 13.0 which uses the finite volumes method for solving the Reynolds Averaged Navier Stokes (RANS) equation. The study is divided in three cases. In the first one, the surface roughness is neglected and the closure problem is solved by k ω SST turbulence model. In the second case, the surface roughness is stipulated according to the model used in the experimental test and the closure problem is solved by k ε turbulence model. In the third case, the surface roughness is stipulated according to the model used in the experimental test and the closure problem is solved by k ω SST turbulence model. The simulation results are presented so that one can observe the dimensionless velocity profile on the surface in each case in order to check the velocity field on the surface under investigation. These results are compared with experimental data obtained in wind tunnel which shows consistency with them. By analyzing the velocity field on the surface, it can be verified that the exact location where there is the best wind potential of a region. This process is called Micrositing.
5

Metodologia de micrositing para terrenos complexos baseada em CFD com softwares livres de código aberto

Radünz, William Corrêa January 2018 (has links)
Micrositing é o campo do posicionamento estratégico dos aerogeradores na área do parque eólico visando a con guração mais promissora em termos econômicos ou de produção. Dado que em terrenos complexos as características do vento variam na área do parque eólico de forma não-linear, emprega-se a modelagem numérica do vento por CFD para extrapolar os dados medidos para toda a região. O presente trabalho consiste no desenvolvimento de uma metodologia de micrositing em terrenos complexos capaz de auxiliar no projeto do layout e seleção do tipo e altura de eixo do aerogerador que maximiza o fator de capacidade (FC) utilizando softwares livres de código aberto. A metodologia consiste na simulação do vento para várias direções de incidência, assimilação das medições, convers ão de velocidade em densidade de potência, ponderação por frequência de ocorrência de cada direção, sobreposição, seleção das coordenadas dos aerogeradores e cálculo do FC para diversas con gurações de tipo e altura de eixo dos aerogeradores. Veri cação, validação e seleção das constantes do modelo de turbulência é realizada anteriormente às simulações Veri cou-se que o modelo k- produziu um escoamento horizontalmente homog êneo e que o melhor desempenho na validação foi obtido com a escolha de constantes para escoamentos atmosféricos. A metodologia foi demonstrada em uma região de terreno complexo em que o FC do parque eólico proposto apresentou caráter convergente com o re no progressivo da malha, porém oscilatório em termos do número de direções simuladas. Por m, obteve-se FC brutos superiores a 40% para as cinco melhores con gurações e de aproximadamente 52% no melhor caso, indicando bom potencial eólico. A metodologia foi capaz de preencher uma lacuna na literatura cientí ca de micrositing ao possibilitar o planejamento do layout, tipo de aerogerador e altura de eixo, bem como a estimativa da produção e FC brutos da usina em terrenos complexos. Além disso, a estrutura de trabalho com o uso de recursos computacionais livres e de código aberto reforça o caráter de desenvolvimento contínuo, compartilhamento e transparência da metodologia. / Micrositing is the eld concerned with the strategic positioning of wind turbines in the wind farm area aimed at the most promissing con guration economically- or yield-wise. Given the wind characteristics vary non-linearly across the wind farm area in complex terrain, numerical wind modeling with CFD is employed to extrapolate the measured data to the whole site. The present work consists of the development of a micrositing methodology in complex terrain capable of assisting the layout project and selection of wind turbine type and hub height that maximizes the capacity factor (CF) using free and open-source software. The methodology consists of simulating the wind for a number of incoming directions, assimilation of measurements, conversion of wind speed into power density, weighing by frequency of occurrence of each direction, overlapping, selection of wind turbine coordinates and CF calculation for a number of wind turbine types and hub heights. Veri cation, validation and selection of turbulence model constants is performed previous to the simulations It was veri ed that the k- model is able to sustain horizontally-homogeneous ow and that the classic atmospheric ow constants performed best in the validation step. The methodology was demonstrated in a complex terrain region for which the proposed wind farm CF showed converging behavior with progressive mesh re nement, however oscillating with the number of wind directions simulated. Ultimately, CF greater than 40% were obtained with the ve best performing con gurations and approximately 52% in the best case scenario, suggesting good wind potential. The methodology was capable of lling a major gap in the scienti c literature of micrositing for allowing the layout planning, selection of wind turbine type and hub height, as well as gross production estimates and CF for the wind farm in complex terrain. Additionally, the free and open-source-based framework strengthens the continuous development, sharing and transparency of the methodology.
6

Análise da aplicação da dinâmica dos fluidos computacional para avaliação do potencial eólico em terrenos complexos

Freitas Filho, Dalmedson Gaúcho Rocha de January 2012 (has links)
Nos últimos anos, a utilização da energia eólica vem apresentando uma tendência de aumento. Um dos principais aspectos para determinar a viabilidade técnica e econômica de uma instalação eólica é a avaliação precisa da distribuição das velocidades de vento na área de aproveitamento. A instalação de turbinas eólicas em áreas com terrenos complexos tem determinado a necessidade de aprimorar a metodologia de previsão do campo de velocidades do vento visando à melhor determinação da distribuição dos equipamentos e aproveitamento do potencial existente. Neste contexto, esta dissertação apresenta um estudo sobre a aplicação da Dinâmica dos Fluidos Computacional - CFD para avaliação do potencial eólico e o comportamento do vento sobre um modelo de uma superfície de topografia complexa. Resultados numéricos com diferentes alternativas de modelagem do problema são comparados com dados de um experimento em túnel de vento, visando determinar a metodologia adequada para avaliação do problema proposto. As simulações numéricas do escoamento de ar sobre o terreno são realizadas com o uso do programa ANSYS-Fluent 13.0, que utiliza o método de volumes finitos para a solução das equações de Navier-Stokes com médias de Reynolds (RANS). O estudo é dividido em três casos. No primeiro caso, a rugosidade superficial é negligenciada e o problema de fechamento é contornado com a utilização do modelo de turbulência k ω SST. No segundo caso, a rugosidade superficial é estipulada de acordo com modelo utilizado no ensaio experimental e o problema de fechamento é contornado com a utilização do modelo de turbulência k - ε. No terceiro caso, a rugosidade superficial também é estipulada de acordo com modelo utilizado no ensaio experimental e o problema de fechamento é contornado com a utilização do modelo de turbulência k ω SST. Os resultados das simulações são apresentados de forma que se possa observar o perfil de velocidades adimensional sobre a superfície da geometria para cada caso, para que seja possível verificar o campo de velocidades sobre a superfície em estudo. O resultado das simulações são comparados com dados experimentais obtidos em túnel de vento: verifica-se um comportamento similar nos perfis de velocidade alcançados. Através da análise do campo de velocidades sobre a superfície em estudo, pode-se obter a localização que apresenta o melhor potencial eólico de uma região. Este processo é conhecido como Micrositing. / In recent years the use of wind energy has shown an increasing. A key aspect to determine the technical and economic viability for the wind power plant is the accurate assessment of the distribution of wind speeds in the area of utilization. The installation of wind turbines in areas with complex terrain has determined the necessity of improve the methodology for the prediction of wind velocity field in order to better determine the distribution of equipment and utilization of existing potential. In this context this work presents a study on the application of computational fluid dynamics to evaluate the wind potential and the behavior of the wind on a model of a complex surface topography. Numerical results with different alternatives for modeling the problem are compared with data from an experiment in wind tunnel to determine the appropriate methodology for evaluation of the problem. The numerical simulations of the air flow over the terrain are performed using the ANSYS Fluent 13.0 which uses the finite volumes method for solving the Reynolds Averaged Navier Stokes (RANS) equation. The study is divided in three cases. In the first one, the surface roughness is neglected and the closure problem is solved by k ω SST turbulence model. In the second case, the surface roughness is stipulated according to the model used in the experimental test and the closure problem is solved by k ε turbulence model. In the third case, the surface roughness is stipulated according to the model used in the experimental test and the closure problem is solved by k ω SST turbulence model. The simulation results are presented so that one can observe the dimensionless velocity profile on the surface in each case in order to check the velocity field on the surface under investigation. These results are compared with experimental data obtained in wind tunnel which shows consistency with them. By analyzing the velocity field on the surface, it can be verified that the exact location where there is the best wind potential of a region. This process is called Micrositing.
7

Análise numérica da disposição de aerogeradores próximos : estudo de caso segundo a teoria constructal

Küchle, Jefferson January 2016 (has links)
Turbinas eólicas usualmente são agrupadas em grandes parques, reduzindo o custo de instalação, transmissão da energia e manutenção periódica. A superposição das esteiras sobre turbinas adjacentes normalmente reduz consideravelmente a capacidade total, objeto de estudo de Micrositing. Porém, por vezes o “efeito Venturi” ocasionado pelas turbinas à montante induz maior velocidade às turbinas adjacentes aumentando o potencial eólico disponível nas linhas consecutivas. De forma inovadora empregar o Design Constructal de Bejan, o modelo do disco atuador genérico e a Dinâmica dos Fluidos Computacional (CFD) para obter a melhor disposição geométrica das turbinas em uma área plana e não rugosa, com foco à maior potência extraída por área de turbinas instaladas. Para tal, modelar e predizer o comportamento da esteira é fundamental, assim como conhecer os modelos de esteira e a aplicabilidade dos métodos empregados. O Design Constructal é a fonte dos parâmetros geométricos base das simulações: o espaçamento entre as turbinas e as razões de diâmetros. Após 64 simulações semi-iterativas e mais de 60 iterativas verifica-se que o maior ganho em potência disponível por área é de 7,37% para a configuração V = 7m/s, S = 3D, d/D = 0.5, L = 3D e 8,48% para a configuração V = 11m/s, S = 3D; d/D = 0.25 & 0.5, L= 0.75D, valor relativo à execução de somente um diâmetro de 100 metros. / Usually wind turbines are grouped in large parks, reducing the cost of installation, energy transmission and periodic maintenance. But the overlapping of the aerodynamical wakes on adjacent turbines reduces the total capacity, Micrositing study. However, the "Venturi effect" caused by the turbines upstream sometimes increases the speed to the adjacent turbines increasing the wind potential available in straight lines. Innovatively employing the Design Constructal Bejan, the model of the actuator disc and Computational Fluid Dynamics (CFD) to search the best geometrical layout of the turbines on a roughless and flat area, focus on higher power extracted by area. To do this, model and predict the wake of behavior is fundamental, as well as know the aerodynamical wakes models and the applicability of the methods employed. The Design Constructal is the source of the simulation’s parameters: spacing between the turbines and the diameter’s ratio. After concluded 64 semi-iterative and iterative simulations, and more than 60 verifies, the best gain in available power per area is 7.37% for the configuration V = 7 m/s; S = 3d; d/D = 0.5; L = 3D. And the gain of 8.48% for the configuration V = 11m/s, s = 3D; d/D = 0.25 & 0.50; L = 0.75D, comparing to the implementation of just 100 meters diameter.
8

A Neural Network-Based Wake Model for Small Wind Turbine Siting near Obstacles

Brunskill, Andrew 03 June 2010 (has links)
Many potential small wind turbine locations are near obstacles such as buildings and shelterbelts, which can have a significant, detrimental effect on the local wind climate. This thesis describes the creation of a new model which can predict the wind speed, turbulence intensity, and wind power density at any point in an obstacle’s region of influence, relative to unsheltered conditions. Artificial neural networks were used to learn the relationship between an obstacle’s characteristics and its effects on the local wind. The neural network was trained using measurements collected in the wakes of scale models exposed to a simulated atmospheric boundary layer in a wind tunnel. A field experiment was conducted to validate the wind tunnel measurements. Model predictions are most accurate in the far wake region. The estimated mean uncertainties associated with model predictions of velocity deficit, power density deficit, and turbulence intensity excess are 5.0%, 15%, and 12.8%, respectively. / Industrial collaborators: Weather INnovations Inc., Wenvor Technologies Inc. / Ontario Centre of Excellence for Energy
9

Análise numérica da disposição de aerogeradores próximos : estudo de caso segundo a teoria constructal

Küchle, Jefferson January 2016 (has links)
Turbinas eólicas usualmente são agrupadas em grandes parques, reduzindo o custo de instalação, transmissão da energia e manutenção periódica. A superposição das esteiras sobre turbinas adjacentes normalmente reduz consideravelmente a capacidade total, objeto de estudo de Micrositing. Porém, por vezes o “efeito Venturi” ocasionado pelas turbinas à montante induz maior velocidade às turbinas adjacentes aumentando o potencial eólico disponível nas linhas consecutivas. De forma inovadora empregar o Design Constructal de Bejan, o modelo do disco atuador genérico e a Dinâmica dos Fluidos Computacional (CFD) para obter a melhor disposição geométrica das turbinas em uma área plana e não rugosa, com foco à maior potência extraída por área de turbinas instaladas. Para tal, modelar e predizer o comportamento da esteira é fundamental, assim como conhecer os modelos de esteira e a aplicabilidade dos métodos empregados. O Design Constructal é a fonte dos parâmetros geométricos base das simulações: o espaçamento entre as turbinas e as razões de diâmetros. Após 64 simulações semi-iterativas e mais de 60 iterativas verifica-se que o maior ganho em potência disponível por área é de 7,37% para a configuração V = 7m/s, S = 3D, d/D = 0.5, L = 3D e 8,48% para a configuração V = 11m/s, S = 3D; d/D = 0.25 & 0.5, L= 0.75D, valor relativo à execução de somente um diâmetro de 100 metros. / Usually wind turbines are grouped in large parks, reducing the cost of installation, energy transmission and periodic maintenance. But the overlapping of the aerodynamical wakes on adjacent turbines reduces the total capacity, Micrositing study. However, the "Venturi effect" caused by the turbines upstream sometimes increases the speed to the adjacent turbines increasing the wind potential available in straight lines. Innovatively employing the Design Constructal Bejan, the model of the actuator disc and Computational Fluid Dynamics (CFD) to search the best geometrical layout of the turbines on a roughless and flat area, focus on higher power extracted by area. To do this, model and predict the wake of behavior is fundamental, as well as know the aerodynamical wakes models and the applicability of the methods employed. The Design Constructal is the source of the simulation’s parameters: spacing between the turbines and the diameter’s ratio. After concluded 64 semi-iterative and iterative simulations, and more than 60 verifies, the best gain in available power per area is 7.37% for the configuration V = 7 m/s; S = 3d; d/D = 0.5; L = 3D. And the gain of 8.48% for the configuration V = 11m/s, s = 3D; d/D = 0.25 & 0.50; L = 0.75D, comparing to the implementation of just 100 meters diameter.
10

Análise numérica da disposição de aerogeradores próximos : estudo de caso segundo a teoria constructal

Küchle, Jefferson January 2016 (has links)
Turbinas eólicas usualmente são agrupadas em grandes parques, reduzindo o custo de instalação, transmissão da energia e manutenção periódica. A superposição das esteiras sobre turbinas adjacentes normalmente reduz consideravelmente a capacidade total, objeto de estudo de Micrositing. Porém, por vezes o “efeito Venturi” ocasionado pelas turbinas à montante induz maior velocidade às turbinas adjacentes aumentando o potencial eólico disponível nas linhas consecutivas. De forma inovadora empregar o Design Constructal de Bejan, o modelo do disco atuador genérico e a Dinâmica dos Fluidos Computacional (CFD) para obter a melhor disposição geométrica das turbinas em uma área plana e não rugosa, com foco à maior potência extraída por área de turbinas instaladas. Para tal, modelar e predizer o comportamento da esteira é fundamental, assim como conhecer os modelos de esteira e a aplicabilidade dos métodos empregados. O Design Constructal é a fonte dos parâmetros geométricos base das simulações: o espaçamento entre as turbinas e as razões de diâmetros. Após 64 simulações semi-iterativas e mais de 60 iterativas verifica-se que o maior ganho em potência disponível por área é de 7,37% para a configuração V = 7m/s, S = 3D, d/D = 0.5, L = 3D e 8,48% para a configuração V = 11m/s, S = 3D; d/D = 0.25 & 0.5, L= 0.75D, valor relativo à execução de somente um diâmetro de 100 metros. / Usually wind turbines are grouped in large parks, reducing the cost of installation, energy transmission and periodic maintenance. But the overlapping of the aerodynamical wakes on adjacent turbines reduces the total capacity, Micrositing study. However, the "Venturi effect" caused by the turbines upstream sometimes increases the speed to the adjacent turbines increasing the wind potential available in straight lines. Innovatively employing the Design Constructal Bejan, the model of the actuator disc and Computational Fluid Dynamics (CFD) to search the best geometrical layout of the turbines on a roughless and flat area, focus on higher power extracted by area. To do this, model and predict the wake of behavior is fundamental, as well as know the aerodynamical wakes models and the applicability of the methods employed. The Design Constructal is the source of the simulation’s parameters: spacing between the turbines and the diameter’s ratio. After concluded 64 semi-iterative and iterative simulations, and more than 60 verifies, the best gain in available power per area is 7.37% for the configuration V = 7 m/s; S = 3d; d/D = 0.5; L = 3D. And the gain of 8.48% for the configuration V = 11m/s, s = 3D; d/D = 0.25 & 0.50; L = 0.75D, comparing to the implementation of just 100 meters diameter.

Page generated in 0.1139 seconds