• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 867
  • 488
  • 380
  • 117
  • 71
  • 47
  • 36
  • 34
  • 31
  • 14
  • 8
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 2764
  • 504
  • 471
  • 432
  • 367
  • 310
  • 296
  • 204
  • 187
  • 164
  • 160
  • 150
  • 147
  • 146
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Microstructure et propriétés superplastiques du laiton 60/40

Suéry, Michel. January 2008 (has links) (PDF)
Reproduction de : Thèse de doctorat : Physique : Metz : 1974. / Titre provenant de l'écran-titre. Notes bibliographiques. Index.
42

Vieillissement thermohydrique de silices nanométriques

Morel, Benoît Lemordant, Daniel. January 2008 (has links) (PDF)
Thèse de doctorat : Chimie : Tours : 2008. / Titre provenant de l'écran-titre.
43

Organic/inorganic nanostructured materials towards synergistic mechanical and optical properties /

Gunawidjaja, Ray. January 2009 (has links)
Thesis (Ph.D)--Industrial and Systems Engineering, Georgia Institute of Technology, 2010. / Committee Chair: Tsukruk, Vladimir; Committee Member: Bucknall, David; Committee Member: Kalaitzidou, Kyriaki; Committee Member: Shofner, Meisha; Committee Member: Tannenbaum, Rina. Part of the SMARTech Electronic Thesis and Dissertation Collection.
44

Growth of lead magnesium niobate-lead titanate single crystals by seeded polycrystal conversion /

Scotch, Adam Matthew, January 2002 (has links)
Thesis (Ph. D.)--Lehigh University, 2003. / Includes vita. Includes bibliographical references (leaves 118-123).
45

Size effect on deformation of aluminum and duralumin micro-pillars

Gu, Rui, 顧瑞 January 2014 (has links)
It is by now well-known that micron-sized metallic crystals exhibit a smaller-being-stronger size effect: the yield strength σvaries with specimen size D approximately as a power law σ~D^(-m)_, and the exponent m has been found to vary within a range of ~0.3 to ~1.0 for different metals. However, little is known about why such a power law comes into play, and what determines the actual value of the exponent m involved. In this study, the power-law scaling of size effect on strength in micro-crystals is explained in terms of the Taylor-type resistance in the dislocation network distribution in the specimen. Theoretical analysis shows that the power-law dependence of yield strength of metallic micro-specimens is derived from a fractal geometry of the initial dislocation network, with m = 3/(q + n) where q is the fractal dimension and n the stress exponent of dislocation velocity. Moderate departures of the initial dislocation structure from an exact fractal geometry may also yield approximate power-law dependence of strength on size. The plastic deformation of micro-pillars is also known to be affected by whether dislocations can escape easily from the material volume, and the extent to which they mutually interact during the deformation. In the present work, pre-straining and coating are used to modify the initial dislocation content and the constraints on the escape of dislocations. Aluminum micro-pillars with or without thin coating by tungsten deposition and pre-straining, were compressed using a flat-punch nanoindenter to study their plasticity behavior. The results reveal very different behavior between specimens in the size regime of a few microns and that about one micron, suggesting that the dominant hardening mechanisms are different. As mentioned above, pure and pristine metal micro-specimens have been found to exhibit very strong size dependence of strength, but alloyed counterparts with a much refined microstructural length scale due to the precipitates present are unknown in this aspect. Here, compression tests on duralumin (aluminum 2025 alloy) micro-pillars reveal a much weaker size dependence of strength compared to pure Al, indicating the predominance of the internal length scale in determining strength. Moreover, two-dimensional dislocation dynamics simulations are used to study precipitate strengthening effects in duralumin micro-pillars. The results show that a refined microstructure may resist and slow down the movement of dislocations inside the confined volume, leading to hardening and weak size dependence of strength. In addition to the compression behavior, the size dependence of the creep behavior of duralumin micro-pillars is also investigated at room temperature. The effects of an internal grain boundary are also investigated. The results reveal that peak-aged duralumin pillars show increasingly significant creep with increasing pillar size, with a typical creep rate of ~〖10〗^(-4) S^(-1) which is drastically larger than that of bulk at room temperature. The bi-crystalline pillars creep even faster than the single crystalline counterparts. TEM examination of the deformed microstructures reveals that the creep rate depends on the residual dislocation density, indicating that dislocations are the agents for creep. Theoretical modeling suggests that the steadystate creep rate is proportional to the lifetime of mobile dislocations, which rises with specimen size in the microns range due to the fact that the dislocations are not easily pinned in this range, therefore they spend longer time in viscous motion across the specimen, leading to a higher strain rate according to the Orowan equation. / published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
46

GaN-based free-standing microdisks and nanostructures

Zhang, Xuhui, 張旭輝 January 2014 (has links)
In this thesis, various micro- and nano-structures, fabricated by micro- and nanosphere lithography (NSL), were applied onto gallium nitride (GaN) based direct-bandgap semiconductors to develop optical micro-cavities supporting whispering gallery mode (WGM) lasing action. This work includes three major sections. The first section introduces the novel nanostructures patterned by NSL and discusses their characterization. The second section elaborates the free-standing microdisk (FSD) cavities supporting WGM lasing. Last section provides an effective approach for optimizing FSD system by replacing the interface layer. Novel nanostructures for various applications are fabricated by NSL. First we developed and demonstrated a drop-on-demand method for fabricating twodimensional (2D) photonic crystal (PhC) arrays. Different geometries, such as nano-pillar and nano-cone, were obtained with variant etching parameters. The GaN PhCs comprising nano-pillar array with diameter of 200 nm were fabricated by different nano-patterning methods, NSL, focused ion beam lithography (FIB), and E-beam lithography (EBL). The surface morphologies and optical properties of fabricated structures were evaluated by various characterization techniques, including scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy, and transmission measurement. The NSL technique is regarded as a preferable approach in fabricating nanostructures. The FSD systems with diverse diameters of 1, 2, and 7 μm were prepared by laser lift-off (LLO) and microsphere lithography (MSL). The FSDs showed vertical and smooth sidewalls as confirmed by SEM images and served as an outstanding microcavities supporting WGM lasing. Optically pumped WGM lasing was obtained at room temperature for FSD systems. The lasing characteristics were fully studies. The thresholds were determined from the plots of PL peak intensity versus pumping energy density and the values were 5.01, 8.54, and 9.06 mJ/cm2 for FSDs with diameter of 1, 2, and 7 μm respectively. The remarkable quality (Q) factor of 2576 was achieved from 1 μm FSD. Anlysis for different thresholds and Q-factors were also discussed. By decreasing the FSD size, the number of lasing peaks is reduced to achieve single mode lasing due to the shrinkage of microdisk providing relatively large mode spacing. An elegant approach was conducted to improve the optical confinement in FSD system in the last section. The beneath layer, originally ITO, was replaced by a reflecting metallic Ni/Ag layer. The SEM images revealed that a thin FSD standing on metallic supporting layer was successfully fabricated. The WGM lasing was also obtained through optical pumping. Lasing mode centered at 430.0 nm has a threshold of 8.82 mJ/cm2 and a Q-factor of 1673. The free space range (FSR) was determined to be 3 nm. A comparison between FSD system with ITO layer and the one with NiAg layer indicated that the metallic layer can server as a reflecting layer and improved the optical confinement of the system. / published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
47

Active three-dimensional protein microstructures

Hill, Ryan Toler 28 August 2008 (has links)
Not available / text
48

Microstructure studies of various oxide materials using electron microscopy

張艷蕾, Cheung, Yim-lui. January 2002 (has links)
published_or_final_version / Physics / Master / Master of Philosophy
49

Yield and geodesic properties of random elasto-plastic materials

Li, Wei, 1970 May 26- January 2008 (has links)
Two topics, i.e., the scale effects and the geodesics of random heterogeneous materials will be discussed in this work. / When the separation of scales in random media does not hold, the representative volume element (RVE) of deterministic continuum mechanics does not exist in the conventional sense, and new concepts and approaches are needed. This subject is discussed here in the context of microstructures of two types - planar random chessboards, and planar random inclusion-matrix composites -- with microscale behavior being elastic-plastic-hardening (power-law). The microstructure is assumed to be spatially homogeneous and ergodic. Principal issues under consideration are those of yield and incipient plastic flow of statistical volume elements (SVE) on mesoscales, and the scaling trend of SVE to the RVE response on macroscale. Indeed, the SVE responses under uniform displacement (or traction) boundary conditions bound from above (respectively, below) the RVE response, and we show via extensive simulations in plane stress that the larger is the mesoscale, the tighter are both bounds. However, the mesoscale flows under both kinds of loading do not, in general, display normality. Also, with the limitation imposed by currently available computational resources, we do not recover normality (or even a trend towards it) when studying the largest possible SVE domains. / The second topic is the geodesic (i.e., shortest path) character of strain fields occurring in elasto-plastic response of planar inclusion-matrix composites. The composites' spatially random morphology is created by generating the disk centers through a sequential inhibition process based on a poisson point field in plane. Both phases (inclusions and matrix) are elastic-plastic-hardening with the matrix being more compliant and weaker than the inclusions, and perfect bonding everywhere. A quantitative comparison of a response pattern obtained by computational micromechanics with that found only by mathematical morphology indicates that (i) the regions of plastic flow are very close to geodesics, and (ii) a purely geometric, and orders of magnitude more rapid than by computational mechanics assessment of these regions is possible.
50

Stereological assessment of the evolution of microstructural damage during creep

Mishra, Surendra 05 1900 (has links)
No description available.

Page generated in 0.0647 seconds