• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 873
  • 489
  • 380
  • 117
  • 71
  • 47
  • 36
  • 34
  • 31
  • 14
  • 8
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 2770
  • 505
  • 471
  • 433
  • 369
  • 311
  • 296
  • 204
  • 189
  • 164
  • 161
  • 150
  • 147
  • 146
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

The Influence of Plasma Treatment on Microstructure and Surface Properties of CrxNy, DLC and TiO2 Thin Films

Chiu, Sung-mao 20 June 2006 (has links)
This thesis is to study the microstructure and its related surface properties of CrxNy¡BDLC and TiO2 films prepared by different plasma energy processes such as physical vapor deposition (PVD) and plasma immersion ion implantation (PIII) processes. In the first chapter of this thesis, the different Cr-based coatings (Cr, Cr2N and CrN) were prepared by PVD process with lower plasma energy condition (less than 100 eV). The surface energy properties of these Cr-based coating were studied and the relationship between the surface properties and adhesion forces with respect to epoxy molding compound (EMC) were also investigated. It is found that the PVD-Cr2N coating has the largest contact angle of water and the lowest polar components and surface energy. The low surface energy is attributed to the high density of surface reactive sites and the formation of N-H bonds and O-H bonds on the film surface that act as the effective adsorption sites for carbon. The second chapter focuses on the modification of the electrical and mechanical properties of DLC films with high plasma energy (5¡ã45 keV) , PIII post-treatment. It is found that using high ion energy and a short treating time can modify the sp3 content, the nano-hardness and the Young¡¦s modulus of the DLC films. The formation mechanisms of sp3 C-C bonds in the implanted DLC film involve the reaction among compressive stress field, bonds breakage and recombination process induced by hydrogen and carbon ion. The third chapter deals with the structure and photocatalytic properties of nitrogen-doped TiO2 film prepared by PVD process with lower plasma energy condition (less than 100 eV). The TiO2-xNx films are indirect transition type and optical band gap energy is various with increasing nitrogen flow rate. The TiO2-xNx film with high crystallinity and porous surface morphology shows the best degradation rate of methylene blue solution.
502

Microstructure and Mechanical Properties of Al-10at%Fe Alloy Subjected to Friction Stir Processing

Lee, I-shan 07 August 2006 (has links)
In this study, billet of a binary Al-10at%Fe alloy was prepared from pure Al and Fe powders by the use of conventional press and sinter route. The sintered billet was then subjected to multiple passages of friction stir processing (FSP). After FSP, the structure of a binary Al-10at%Fe alloy can be refined to sub-micrometer scale. Transmission electron microscopy (TEM) showed that particles of Fe-containing phase were distributed uniformly in the aluminum matrix, and the mean size of these second phase particles was about 100nm. From the results of X-ray diffraction and energy dispersive spectroscopy (EDS), the Al-Fe second phase was identified as Al13Fe4. We also observed obvious reaction zone around iron particles in the friction-stirred zone. Apparently, a rapid in-situ reaction between Al and Fe had occurred in FSP. In order to reduce the reaction time and the heat input, the higher traversing speed was used. In addition, a higher sintering temperature was used to promote Al-Fe reaction. Furthermore, micro-hardness, tensile and compressive tests were performed to evaluate the mechanical properties of the Al-10at%Fe alloy fabricated by FSP.
503

The Effect of Information Asymmetry on Firms' Financing Decisions

Kuo, Yi-Ling 12 March 2007 (has links)
We use an information asymmetry index , which is based on measures of adverse selection developed by market microstructure literature rather than on ex-ante firm characteristics, to measure the level of information asymmetry . Then we want to test how the information asymmetry, the sole and principal determinant of the pecking order theory, basically affects capital structure decision. During the period 1995-2005, We find that information asymmetry does affect firm¡¦s debt issuance positively and significantly, especially when firms¡¦ size are large and when firm¡¦s financing needs are high. Furthermore, we find there are some other determinants have important influence on firms¡¦ financing decision. This result can explain why the literatures are always only partially successful in interpreting firms¡¦ financing decisions. It also suggests that if we test models under basic assumptions, we can find some support in any theory.
504

An Investigation Of Microstructure, Microhardness And Biocompatibility Characteristics Of Yttrium Hydroxyapatite Doped With Fluoride

Toker, Sidika Mine 01 January 2010 (has links) (PDF)
The aim of this study was to investigate the microstructure, microhardness and biocompatibility properties of nano hydroxyapatite (HA) doped with a constant yttrium (Y3+) and varying fluoride (F-) compositions. HA was synthesized via precipitation method and sintered at 1100&amp / #61616 / C for 1 hour. Increased densities were achieved upon Y3+ doping while F- doping led to a decrease in densities. For structural analysis, XRD, SEM and FTIR spectroscopy examinations were performed. No secondary phases were observed in XRD studies upon doping. Lattice parameters decreased due to substitutions of ions. In SEM analysis, addition of doping ions was observed to result in smaller grains. In FTIR analysis, in addition to the characteristic bands of HA, novel bands indicating the substitution of F- ions were observed in F- ion doped samples. The highest microhardness value was obtained for the sample doped with 2.5%Y3+, 1%F-. Increased F- ion contents resulted in decreased microhardness values. For biocompatibility evaluation, in vitro tests were applied to the materials. MTT assay was performed for Saos-2 cell proliferation analysis. Y3+ and F- ion incorporation was found to improve cell proliferation on HA discs. Cells were found to attach and proliferate on disc surfaces in SEM analysis. ALP assay showed differentiation of cells on the discs can be improved by doping HA with an optimum amount of F- ion. Dissolution tests in DMEM revealed that structural stability of HA was improved with F- ion incorporation. The material exhibiting optimum structural, mechanical and biocompatibility properties was HA doped with 2.5%Y3+, 1%F-.
505

The Study of Microstructure and Magnetoresistance of La0.67Ca0.33MnO3

Chuang, Ting-Wei 27 June 2001 (has links)
Abstract Recently, the large magneto-resistance effects in epitaxial manganite thin films has interested in the doped manganite perovskite materials for magnetic random access memory (MRAM) and read-head application. The relation between the magneto-resistance and microstructure of the colossal magneto-resistance materials has been evaluated in this study. Different thickness of La0.67Ca0.33Mn03 (LCMO) thin films were grown on (001) MgO and (001) SrTi03 (STO) substrates at growth temperature 750 degree C with RF magnetron sputtering technique, respectively. These substrates provide two different lattice-mismatch conditions for the LCMO films (+9% for MgO and +1% for STO). The crystal structure of LCMO films were characterized with X-ray diffraction (XRD), the surface morphology of LCMO films were observed by scanning electron microscope (SEM), the interface of microstructure between LCMO films and substrate were studied by transmission electron microscope (TEM), the thickness and chemical composition of LCMO films were determined by Rutherford backscattering spectrometer (RBS), and finally the resistance and I-M transition temperature were evaluated at temperature range from 77K to 300K. The results show that the epitaxial LCMO films with a superlattice structure were obtained on STO substrate and polycrystal structure of LCMO films were on MgO substrate due to larger lattice mismatch.. The transition temperature of magneto-resistance of LCMO thin film is quite sensitive with film thickness. The transition temperature increases with film thickness increased. When the film with thickness excess of 2000A, the transition temperature is nearly same as that of LCMO bulk material.. The existed strain and the microstructure of LCMO films are two important factors related with magnetic resistance and electrical properties of LCMO films.
506

none

Lin, Hong-Ren 25 July 2001 (has links)
none
507

The Study of Microstructure and Magnetoresistance of La0.67Ca0.33MnO3

Li, Hsiu-Chuan 01 July 2002 (has links)
Abstract Recent progress in oxide perovskite thin-film technology has led to the discovery of a large negative magnetoresistance in doped manganate perovskite thin films. These films may have potentials for magnetic random access memory (MRAM) and magnetic sensors. Therefore, the research of magnetoresistance has been attracted a lot of attentions. The magnetoresistance is directly related to the microstructure. In an application point of view, the ulta-thin film may be more appropriate compares with those utilizing with thicker films. In this paper, we report the detail results of electrical property of La0.67Ca0.33MnO3 (LCMO) films related with their microstructure. The La0.67Ca0.33MnO3 (LCMO) films were deposited on (001) STO substrate with RF sputtering technique. The working pressure was maintained at 100m torr and the growth temperature was kept at 750¢J. After growth the films was annealed at 850¢J for 1 hour in a 500 torr O2 annealing environment. The growth time was 3mins.¡B6mins. and 12mins. respectively. The crystal structure of LCMO films were characterized with X-ray diffraction (XRD). The surface morphology of LCMO films were observed by scanning electron microscope (SEM) and the interface of microstructure between LCMO films and STO substrate were investigated by transmission electron microscope (TEM). Finally the M-I transition temperature were evaluated with 4-point probe at the temperature range from 300K down to 77K. The results show that the LCMO films were amorphous when the growth time was in 3 mins. The microstructure of the film gradually became poly-crystal and had a (001) prefer orientation after the growth time increasing to 6 mins. The grain size of the 12 mins growth film was at 40-50 nm scale. The Curie temperature and magnetoresistance change of these films were increased as the degree of crystallization of these films became better.
508

none

Tseng, Wan-Ju 29 July 2003 (has links)
none
509

Phase-transformation-induced microstructures in perovskites

Cheng, Shun-Yu 26 November 2007 (has links)
Phase-transformation-induced microstructures, including twin domains, anti-phase domains and inversion domains have been analyzed using the scanning and transmission electron microscopy for BaTiO3, BaCeO3 and CaTiO3 of the perovskite structure. Differential etching rate was taken to identify the ferroelectric domains in tetragonal (t-) BaTiO3. Space group Pbnm (No. 62) usually adopted for the orthorhombic crystals by materials scientists is assumed throughout this research to avoid confusion of the plane and direction indices. Traditional contrast analysis was adopted for determining dislocation Burgers vectors (b) and fault vectors (R) in deformed and phase-transformed perovskites, synthetic ceramics (BaTiO3, BaCeO3 and CaTiO3) as well as natural minerals (CaTiO3), polycrystalline (BaTiO3, BaCeO3 and CaTiO3) as well as single crystal (CaTiO3). Atomic images for the structures of twin boundaries and anti-phase boundaries were taken by high resolution technique and image contrast enhancement was performed using fast Fourier transform. Failure of Friedel¡¦s law is adopted for determining if the crystal belongs to non-centrosymmetric point groups. Whether the twins are £_-, £\- or £k-type (i.e. anti-phase domain boundaries) is analysed from the contrast of extreme fringe patterns. Tilting experiments were performed on selected area diffraction patterns containing un-split row of reflections to ensure that the twin boundaries are the reflection or rotation type. Transformation twinning in all perovskites studied here follows the prediction by the relation of point group symmetries between the high- and low-symmetry phases, assuming continuous, diffusionless, second-order transitions that obey the restrictions imposed by the Landau theory of phase transition. Although such predictions of transformation-induced twinning are only permitted when crystallographic group-subgroup relationship exists and structural coherence retains between the high- and low-symmetry phases, experimental observations for r (rhombohedral) ¡÷ o-BaCeO3 and t ¡÷ o in CaTiO3 that are not related by group-subgroup, c (cubic) ¡÷ t (tetragonal) in CaTiO3 and and c (cubic) ¡÷ t (tetragonal) in BaTiO3 that are related by group-subgroup, are all consistent with the predictions from loss of point group symmetry elements and change of unit cell volume. In order that the Landau theory is conformed, however, an intermediate phase of either the lowest common supergroup (cubic Pm m) or highest common subgroup (monoclinic C2/c), with phase transition experiencing multistage pathways suggested by Christy and assumption of non-disruption conditions proposed by Guymont, was identified to bridge between two structures, such as rhombohedral and orthorhombic that are not group-subgroup related. Both the 90o and 180o ferroelectric twin domains in t-BaTiO3 are the reflection type and have been identified in pressureless-sintered ceramics. Further, fault vectors (R = £`<110]) for such domain boundaries were determined, boundary planes of {110) for the former, {100) and {220) for the latter deduced accordingly. The polar c-direction between adjacent domains was determined by differential etching rate across domain boundaries, convergent beam electron diffraction was also adopted for identification and confirmation of the c-axis for two types of domains in t-BaTiO3. Plastic deformation resulting from the thermodynamic driving force for sintering (?p) intensified by a multiplication factor £p) was evidenced microstructurally from analysing dislocations in pressureless-sintered BaTiO3 where a Frank-Read source was observed. Slip systems are activated for the effective stress acting on the slip plane along the slip direction has exceeded the critical value of resolved shear stress (£nCRSS) and yielding occurs. It has contributed to densification, i.e. the overall system shrinkage of a green powder compact, although if such contribution is at all significant requires studies of sintering kinetics to ascertain. Dislocation dissociation into the scallop-shaped half partials according to the following reactions is determined from analysing corresponding Burgers vectors. [010] + [001] ¡÷ [011] [001] + [10 ] ¡÷ [100] [001] + [110] ¡÷ [111] Both transformation twins lying in {110) and {112) and anti-phase domain boundaries with R = 1/2<111> are detected in o-BaCeO3. For orthorhombic (o-) BaCeO3, fault vectors of the latter R = 1/2<111> determined by contrast analysis was confirmed by high-resolution imaging, but on the contrary, fault vectors the former R = £`<110] and £`<021], respectively, could not be determined from such images. Utilizing the technique of large-angle convergent beam electron diffraction, such fault vectors and dislocation Burgers vectors determined by traditional contrast analysis have been confirmed. Both twinning and dislocations were observed in hot-pressed CaTiO3 prepared in a multi-anvil apparatus. Such twins are deformation twins since hot-pressing was conducted in the orthorhombic stable phase field at 1000oC under 8 GPa. Since fault vectors R = £`<110] determined for {112) and {110) twins are different from the transformation-induced twins in o-CaTiO3, R = £`<021] determined for the {112) twinning in natural perovskite may serve as a diagnostic feature for the deformation twins. Plastic deformation in hot-pressured sample was contributed by both slip and twinning. Slip occurred via slip systems with dislocations of b = [110] gliding in (110) is therefore {110}o <1 0>o (equivalent to {100}pc <001>pc, where pc for pseudo-cubic) often found in perovskites deformed at high temperatures. Another set of dislocations with b = [001] in screw orientation was also determined. APB with R = 1/2<111> detected in natural minerals suggests that the phase transition sequence in CaTiO3 is better described by: (c) ¡÷ t (I4/mcm) ¡÷ o (Pbnm) and such APB are generated from loss of the lattice point at I-centre (1/2,1/2,1/2) in the absence of a second orthorhombic Cmcm between t-I4/mcm and o-Pbnm reported before from neutron and X-ray powder diffraction studies.
510

Constructions of Controllable Nanostructure Silver Wires and Microstructure Copper Oxide Donuts by a Surface-Formation Technique

Chen, Chen-Ni 15 June 2009 (has links)
In the past few years, the synthesis and fabrication of inorganic nanostructures with manipulated morphology and size have attracted considerable attention due to their fundamental importance and potential wide-ranging applications. Silver nanowires are particularly interesting to study because bulk silver has the highest electric conductivity among all metals. A number of chemical approaches have been explored to synthesize 1D silver nanowires. We demonstrate a simple method to synthesize silver wires by thermal reduction of aqueous AgNO3 droplet with catalytic anatase TiO2 nanoparticles which were spin-coated on ITO or glass. Our simple method can be also applied to generate CuO with donut-shaped microstructure by using ITO conducting glass as matrix. We have found that the size and reproducibility are well-controllable. A single phase of CuO donut-shaped microstructure with outer diameters ranging from ∼ 13 to 17 £gm and inner diameters ranging from ∼ 1.4 to 3.3 £gm was obtained. The composition of CuO microdonut was confirmed by thin-film XRD and XPS analyses.

Page generated in 0.0881 seconds