• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 873
  • 489
  • 380
  • 117
  • 71
  • 47
  • 36
  • 34
  • 31
  • 14
  • 8
  • 7
  • 6
  • 6
  • 6
  • Tagged with
  • 2770
  • 505
  • 471
  • 433
  • 369
  • 311
  • 296
  • 204
  • 189
  • 164
  • 161
  • 150
  • 147
  • 146
  • 144
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
931

Moessbauer spectroscopic studies of the magnetic and structural properties of novel nanophase magnetic materials

Milford, Gabrielle Helen January 2000 (has links)
No description available.
932

Reaction dynamics of small molecules at metal surfaces

Samson, Paul Anthony January 1999 (has links)
No description available.
933

Ion scattering studies of the surface and near surface region of metals and semiconductors

Dixon, Richard John January 1998 (has links)
No description available.
934

The dissolution of Ag(111) electrodes investigated by in situ scanning tunnelling microscopy

Wilson, Tony Keith January 1998 (has links)
No description available.
935

Structural and spectroscopic studies of surfaces on the nanometre scale

Festy, Frederic January 2000 (has links)
No description available.
936

A study on magnetic anisotropy induced in the HDDR process

Fujita, Akira January 1999 (has links)
No description available.
937

The chemical and magnetic structures of rare earth alloys and superlattices

Clegg, Paul S. January 2000 (has links)
No description available.
938

Mesoscale modelling of processing toughened polymers

Porfyrakis, Kyriakos January 2000 (has links)
No description available.
939

Deposition and interface modification of thin magnetic multilayer films by closed-field unbalanced magnetron sputtering

Ormston, Marcus Winston January 2000 (has links)
No description available.
940

Microstructural Strengthening Mechanisms in Micro-truss Periodic Cellular Metals

Bouwhuis, Brandon 01 March 2010 (has links)
This thesis investigates the effect of microstructural strengthening mechanisms on the overall mechanical performance of micro-truss periodic cellular metals (PCMs). Prior to the author’s work, the primary design considerations of micro-truss PCMs had been topological issues, i.e. the architectural arrangement of the load-supporting ligaments. Very little attention had been given to investigate the influence of microstructural effects within the cellular ligaments. Of the four broad categories of strengthening mechanisms in metals, only solute and second phase strengthening had previously been used in micro-trusses; the potential for strengthening micro-truss materials by work-hardening or grain size reduction had not been addressed. In order to utilize these strengthening mechanisms in micro-truss PCMs, two issues needed to be addressed. First, the deformation-forming method used to produce the micro-trusses was analyzed in order to map the fabrication-induced (in-situ) strain as well as the range of architectures that could be reached. Second, a new compression testing method was developed to simulate the properties of the micro-truss as part of a common functional form, i.e. as the core of a light-weight sandwich panel, and test the effectiveness of microstructural strengthening mechanisms without the influence of typical high-temperature sandwich panel joining processes, such as brazing. The first strengthening mechanism was achieved by controlling the distribution of plastic strain imparted to the micro-truss struts during fabrication. It was shown that this strain energy can lead to a factor of three increase in compressive strength without an associated weight penalty. An analytical model for the critical inelastic buckling stress of the micro-truss struts during uniaxial compression was developed in terms of the axial flow stress during stretch forming fabrication. The second mechanism was achieved by electrodeposition of a high-strength nanocrystalline metal sleeve around the cellular ligaments, producing new types of hybrid nanocrystalline cellular metals. It was shown that despite the added mass, the nanocrystalline sleeves could increase the weight-specific strength of micro-truss hybrids. An isostrain model was developed based on the theoretical behaviour of a nanocrystalline metal tube network in order to predict the compressive strength of the hybrid materials.

Page generated in 0.0447 seconds