• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nonlinear dynamics of optically pumped laser

Jiad, Khalid Mohammed January 1993 (has links)
No description available.
2

Realizing a mid-infrared optically pumped molecular gas laser inside hollow-core photonic crystal fiber

Jones, Andrew Michael January 1900 (has links)
Doctor of Philosophy / Department of Physics / Kristan L. Corwin / This research has focused on the development, demonstration, and characterization of a new type of laser based on optically-pumped gases contained within hollow optical fibers. These novel lasers are appealing for a variety of applications including frequency metrology in the mid-infrared, free-space communications and imaging, and defense applications. Furthermore, because of the hollow core fibers used, this technology may provide the means to surpass the theoretical limits of output power available from high power solid-core fiber laser systems. Gas-filled hollow-core fiber lasers based on population inversion from acetylene ([superscript]12C[subscript]2H[subscript]2) and hydrogen cyanide (HCN) gas contained within the core of a kagome-structured hollow-core photonic crystal fiber have now been demonstrated. The gases are optically pumped via first order rotational-vibrational overtones near 1.5 μm using 1-ns duration pulses from a home-built optical parametric amplifier. Narrow-band laser emission peaks in the 3-μm region corresponding to the ΔJ = ±1 dipole allowed rotational transitions between the pumped vibrational overtone modes and the fundamental C-H stretching modes have been observed in both molecules. High gain resulting from tight confinement of the pump and laser light together with the active gas permits these lasers to operate in a single pass configuration, without the use of any external resonator structure. Studies of the generated mid-infrared pulse energy, threshold energy, and slope efficiency as functions of the launched pump pulse energy and gas pressure have been performed and show an optimum condition where the maximum laser pulse energy is achieved for a given fiber length. The laser pulse shape and the laser-to-pump pulse delay have been observed to change with varying pump pulse energy and gas pressure, resulting from the necessary population inversion being created in the gases at a specific fiber length dependent on the launched pulse energy. Work is on going to demonstrate the first continuous wave version of the laser which may be used to produce a single coherent output from many mutually incoherent pump sources.
3

CW Mid-infrared NH3 Lasers

Kroeker, David Francis 03 1900 (has links)
This thesis describes a series of experiments that were undertaken to extend the limits of output power and wavelength coverage of optically pumped mid-infrared lasers. Initially, two new CW Raman lasers operating at wavelengths of 11.5 and 12.5 pm were developed. Maximum powers of 650 and 150 mW were produced, with pump powers of 11 and 3.3 W, respectively. The effect of the pump offset on the output power was then determined by measuring the efficiency of an NHg laser pumped at frequency offsets of 94 and 274 MHz. In lasers operating in pure NH3, the larger pump offset required a greater pump intensity to reach threshold, but efficiency increased with pump offset. Higher NH3 pressures could be used at larger pump offsets and the improved efficiency was attributed to reduced saturation effects at the higher operating pressures. Experiments carried out with NHg inversion lasers have greatly increased the output powers available at a large number of wavelengths in the 10 to.14 pm range. In a buffered NH3 mixture, the sR(5,0) transition was pumped on resonance. C^llis;o^r^s with either — or Ar buffer gases were effective in thermalizing the rotational populations in the v>2=1 vibrational level and producing gain on a wide range of frequencies. Output powers as large as 3.5 W on a single line and greater than 5 W multi-line were produced, at efficiencies of 20 and 30 % respectively. The number of lasing wavelengths increased substantially, as more than forty ortho-NH3 transitions were observed to lase in a grating-tuned cavity. The optical pumping technique was then used for the first time to produce line-tunable lasing on para-NH3 transitions. The sR(5,l) transition was pumped near resonance and 24 para-transst'lons were observed to lase. In total, lasing was achieved on 65 different transitions in 14NH3, with wavelengths of 10.3 to 13.8 pm. / Thesis / Master of Science (MSc)
4

Q-switched and Mode-locked Mid-IR Fiber Lasers

Zhu, Gongwen January 2015 (has links)
Mid-infrared (IR) lasers (2-12 μm) have found tremendous applications in medical surgeries, spectroscopy, remote sensing, etc. Nowadays, mid-IR emissions are usually generated from semiconductor lasers, gas lasers, and solid-state lasers based on nonlinear wavelength conversion. However, they usually have disadvantages including poor beam quality, low efficiency, and complicated configurations. Mid-IR fiber lasers have the advantages of excellent beam quality, high efficiency, inherent simplicity, compactness, and outstanding heat-dissipating capability, and have attracted significant interest in recent years. In this dissertation, I have studied and investigated Q-switched and mode-locked fiber lasers in the mid-IR wavelength region. My dissertation includes six chapters: In Chapter 1, I review the background of mid-IR lasers and address my motivation on the research of mid-IR fiber lasers; In Chapter 2, I present the experimental results of microsecond and nanosecond Er³⁺-doped and Ho³⁺-doped fiber lasers in the 3 μm wavelength region Q-switched by Fe²⁺:ZnSe and graphene saturable absorbers. In Chapter 3, Q-switched 3 μm laser fiber amplifiers are investigated experimentally and theoretically and their power scaling are discussed. In Chapter 4, a graphene mode-locked Er³⁺-doped fiber lasers at 2.8 μm with a pulse width < 50 ps is presented. In Chapter 5, extending the spectral range of mid-IR fiber lasers by use of nonlinear wavelength conversion is addressed and discussed. I have proposed 10-watt-level 3-5 μm Raman lasers using tellurite fibers as the nonlinear gain medium and pumped by our Er³⁺-doped fiber lasers at 2.8 μm. In the last chapter, the prospect of mid-IR fiber laser is addressed and further research work is discussed.

Page generated in 0.0869 seconds