Spelling suggestions: "subject:"milieux hypersalines"" "subject:"milieux hypersaline""
1 |
Biodégradation des Hydrocarbures en milieux hypersalins : modes de transferts et réponses des communautés procaryotiques à une contamination pétrolière. / hydrocarbons biodegradation in hypersaline environments : modes of transfer and responses of prokaryotic communities to oil contaminationDjeridi, Ikram 27 September 2013 (has links)
Le devenir des hydrocarbures (HC) dans les environnements hypersalins constitue une problématique environnementale majeure. Ce travail pour objectifs (1) d’évaluer l’impact d’une pollution pétrolière sur les communautés microbiennes d’un milieu hypersalin, (2) de déterminer comment les archées hydrocarbonoclastes accèdent aux HC et, (3) de déterminer si la biodégradation est possible en conditions anaérobies dans ces environnements hypersalés. Nous avons démontré qu’une biodégradation modérée du pétrole est possible en milieu hypersalin environ 10 % de la fraction aliphatique du pétrole sont biodégradé. Une disparition progressive des composés aromatiques les plus légers est également observée, liée aux processus abiotiques. La dynamique des communautés procaryotiques montre un changement dans la structure de la communauté bactérienne autochtone des saumures. Une résistance à la contamination pétrolière a en revanche été observée pour les communautés archéennes des saumures. Dans une deuxième partie du travail, nous avons pu montrer, à l’aide d’une souche d’archée hyperhalophile modèle (Haloferax volcanii MSCN14), que les archées hydrocarbonoclastes de ces environnements mettent en oeuvre plusieurs mécanismes leur permettant d’augmenter la biodisponibilité des HC. Dans une dernière partie des travaux, nous avons testé les capacités d’une souche modèle (Hfx. volcanii MSNC 16) à dégrader les HC en anaérobiose. Si Hfx. volcanii MSNC16 est bien capable d’utiliser le fumarate comme accepteur terminal d’électrons, elle n’est en revanche pas capable de dégrader l’alcane testé (heptadécane) en absence d’oxygène. / The fate of hydrocarbons (HC) in hypersaline environments is an important environmental issue. This work aimed to (1) assess the impact of oil pollution on microbial communities of a hypersaline environment, (2) determine how hydrocarbonoclastic archaea can access to HC and (3) whether biodegradation is possible in these hypersaline environments in the absence of oxygen. We have shown that moderate oil biodegradation is possible under hypersaline conditions. In these conditions close to natural ones, about 10% of the aliphatic hydrocarbons were biodegrade. A gradual disappearance of the lighter aromatic compounds was also observed, but these losses were mainly due to abiotic processes. The monitoring of prokaryotic communities based on molecular fingerprints showed a change in the structure of the indigenous bacterial community. On the contrary, resistance to oil contamination was observed among the indigenous archaeal communities of brines. In the second part of this work, laboratory cultures of a hyperhalophilic archaeal strain (Haloferax volcanii MSCN14), allowed to demonstrate that, in hypersaline environments, hydrocarbonoclastic archaea use several strategies to increase the bioavailability of HC. Indeed, strain MSCN14 was capable of producing one or several biosurfactants during growth on different HC, and was adhering to the surface of the HC. In the last part of this work, we tested the capacities of a model archaeal strain (Hfx. volcanii MSNC 16) to degrade HC anaerobically. If Hfx. volcanii MSNC16 was able to use fumarate as a terminal electron acceptor, it was, however, not capable of degrading heptadecane in the absence of oxygen.
|
2 |
Structures et processus de minéralisation et de diagenèse des tapis microbiens actuels en domaines hypersalins continental et marin / Processes and products of mineralization and early diagenesis in modern hypersaline microbial mats : comparison of continental and marine domainsPace, Aurélie 26 September 2016 (has links)
Les microbialithes sont des dépôts organosédimentaires benthiques résultant de la minéralisation et de la lithification de tapis microbiens, et dont les plus anciennes formes, se développant il y a 3.4 Ga, constituèrent les premiers écosystèmes terrestres. Ils forment alors une archive sédimentaire unique incluant des périodes clés de l’histoire géologique. Ce travail de thèse se propose d’analyser et de comparer les processus et produits de minéralisation dans les tapis microbiens actuels de deux environnements contrastés : un exemple de lac intracontinental hypersalin, le Grand Lac salé (GSL) aux USA ; une lagune hypersaline à alimentation marine, à Cayo Coco (Cuba) (CCLN). Le devenir des minéraux au cours de la diagenèse précoce, ainsi que leur potentiel d’enregistrement de biosignatures seront particulièrement analysés. Cette thèse se focalisera spécialement sur l’influence de trois facteurs majeurs contrôlant la minéralogie et la fabrique des microbialithes : (i) le rôle de la chimie du milieu (ii) le rôle des métabolismes microbiens (le moteur de l’alcalinité) ; (iii) le rôle de la production et de la dégradation des matrices organiques extracellulaires (EOM). Les deux cas d’études démontrent un rôle prépondérant de la production d’EOM par les cyanobactéries et leur dégradation par les bactéries hétérotrophes dans la minéralisation : (1) Dans les deux systèmes, la première phase minérale a précipiter sur les EOM alvéolaires est une phase riche en magnésium et en silicium. Ce type de minéraux nécessite des pH>8.6-8.7 pour cristalliser. (2) Une autre observation commune est que les carbonates cristallisent souvent dans des zones de forte activité des bactéries sulfato-réductrices (SRB). Notre hypothèse est que les SRB dégradent les EOM, libérant des cations (Mg2+ et Ca2+) disponibles pour la cristallisation des carbonates. Dans les tapis du CCLN et contrairement au GSL, nos résultats démontrent une forte activité de photosynthèse anoxygénique par les bactéries pourpres sulfureuses (PSB). La limite entre la zone oxique et la zone anoxique est caractérisée par un pH maximum et coïncide avec la formation d’une lamine de carbonates. Deux différences majeures sont observées entre les paragenèses du GSL et du CCLN : (1) le locus initial de la précipitation des carbonates. Dans le GSL, l’aragonite précipite dans les cyanobactéries, perminéralise leur paroi et enfin la matrice organique. Pour Cuba, une calcite magnésienne péloïdale précipite sur les EOM puis rempli les bactéries ; (2) la minéralogie et l’évolution des carbonates lors de la diagenèse précoce. Les microbialithes du GSL montrent une aragonite partiellement dissoute et une dolomite venant se développer à sa périphérie. Au CCLN, de l’aragonite se développe en surcroissance des peloïdes de HMC précédemment formés. Les différences minéralogiques des carbonates entre les deux systèmes pourraient s’expliquer par un changement du rapport Mg/Ca. Les résultats pourront être utilisés afin de mieux interpréter les conditions paléoenvironnementales et les processus microbiens en jeu dans des microbialithes de registres fossiles analogues. / Microbialites are benthic organosedimentary deposits resulting of the mineralization and lithification of the microbial mats, and the most ancient forms, developing there are 3.4 Ga, are the first earthly ecosystem. They form a unique sedimentary archive including key periods of the geological history. This study proposes to analyze and compare the processes and the products of mineralization in the modern microbial mats of two different environments: an example of intracontinental modern lake, the Great Salt Lake (USA; GSL); a lagoonal marine sea fed in Cayo Coco (Cuba; CCLN). The mineral product during of the primary diagenesis, as that them potential of biosignatures recording will be particularly detailed. This work will focus on the influence of three major factors controlling the mineralogy and the fabric of the microbialites: (i) environment chemistry role, (ii) microbial metabolisms role, (iii) role of the production and degradation of the extracellular organic matrix (EOM). Both environments studied show a high role of the EOM production by cyanobacteria and them degradation by the heterotrophic bacteria in the mineralization: (1) In both systems, the first phase to precipitate on the alveolar EOM is a rich magnesium and silica phase. This type of mineral needs pH around 8.6/8.7 to precipitate. (2) An other common observation is that carbonate precipitate generally in the high sulfate-reducing activity zones. Our hypothesis is that the sulfato-reducing bacteria (SRB) degrade the EOM, releasing cations (Mg2+ and Ca2+) available for carbonate crystallization. The limit between the oxic and anoxic zones is characterized by maximum pH coinciding with the precipitation of carbonate lamina. Two mains differences have been observed between the paragenesis both systems: (1) initial locus of the carbonate precipitation. In the GSL, the aragonite precipitates in the bacteria and then permineralizes the wall of bacteria and then the EOM network. In Cuba, the peloidal magnesian calcite precipitates on the EOM then fill the bacteria; (2) the mineralogy and the evolution of the carbonate during the preliminary diagenesis. The microbialithes of GSL show the aragonite partly dissolved and a dolomite developing next to the aragonite. In the CCLN, aragonite developing around the magnesian calcite peloids. The mineralogical carbonate differences between both systems could explain by a change of the Mg/Ca. The results could be used to better understand and interpret the paleoenvironmental conditions and the microbial processes stake in ancient microbialite analogs.
|
Page generated in 0.0799 seconds