• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 7
  • 6
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 92
  • 92
  • 29
  • 25
  • 24
  • 24
  • 20
  • 14
  • 13
  • 13
  • 13
  • 12
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

On the dynamics of tidal streams in the Milky Way galaxy

Eyre, Andrew McEwan January 2010 (has links)
We present a brief history of Galactic astrophysics, and explain the origin of halo substructure in the Milky Way Galaxy. We motivate our study of the dynamics of tidal streams in our Galaxy by highlighting the tight constraints that analysis of the trajectories of tidal streams can place on the form of the Galactic potential. We address the reconstruction of orbits from observations of tidal streams. We upgrade the geometrodynamical scheme reported by Binney (2008) and Jin & Lynden-Bell (2007), which reconstructs orbits from streams using radial-velocity measurements, to allow it to work with erroneous input data. The upgraded algorithm can correct for both statistical error on observations, and systematic error due to streams not delineating individual orbits, and given high-quality but realistic input data, it can diagnose the potential with considerable accuracy. We complement the work of Binney (2008) by deriving a new algorithm, which reconstructs orbits from streams using proper-motion data rather than radial-velocity data. We demonstrate that the new algorithm has a similar potency for diagnosing the Galactic potential. We explore the concept of Galactic parallax, which arises in connection with our proper-motion study. Galactic parallax allows trigonometric distance calculation to stars at 40 times the range of conventional parallax, although its applicability is limited to only those stars in tidal streams. We examine from first principles the mechanics of tidal stream formation and propagation. We find that the mechanics of tidal streams has a natural expression in terms of action-angle variables. We find that tidal streams in realistic galaxy potentials will generally not delineate orbits precisely, and that attempting to constrain the Galactic potential by assuming that they do can lead to large systematic error. We show that we can accurately predict the real-space trajectories of streams, even when they differ significantly from orbits.
42

Modelling the Milky Way stellar halo

Fermani, Francesco January 2013 (has links)
We motivate the importance of understanding the kinematics and dynamics of the Milky Way stellar halo both in unravelling the formation history and evolution of our host Galaxy and in the more general context of galaxy dynamics. We present a cleaned picture of the kinematics of the smooth component of the stellar halo: we develop a method to quantify the average distance error on a sample of stars based on the idea of Schoenrich et al. (2012), but adapted so that it uses velocity information only on average. We use this scheme to construct an analytic distance calibration for Blue Horizontal Branch (BHB) field halo stars in Sloan colours and demonstrate that our calibration is a) more accurate than the ones available and b) unbiased w.r.t. metallicity and colour. We measure the rotation of the smooth component of the stellar halo with a tool-set of four estimators that use either only the l.o.s. velocities or the full 3D motion. From two samples of BHB stars from the Sloan Digital Sky Survey, we favour a non-rotating single halo. We critique conflicting results in the literature based on similar samples and trace back the disagreement (either in the sign of rotation or in the morphology of the halo) to sample contaminations and/or neglect account of the halo geometry. We propose a scheme that generalizes any isotropic spherical model to a model where the potential is axisymmetric and the distribution function is a function of the three actions. The idea is to approximate the Hamiltonian as a function of the actions with a library of quadratic fits to surfaces of constant energy in action space and then make explicit the dependence of the energy on the three actions in the ergodic distribution function. The transparency of the physics implied by the model we achieve, should make it possible to combine our spheroidal models to the f(J)-models of Binney (2010) for the disks and of Pontzen & Governato (2013) for the dark-matter halo, and obtain a complete actions-defined dynamical model of the Milky Way Galaxy.
43

Gas flow and star formation in the centre of the Milky Way : investigations with smoothed particle hydrodynamics

Lucas, William January 2015 (has links)
The centre of the Milky Way, commonly referred to as the Galactic Centre, is roughly that region within 500 pc of the central black hole, Sagittarius A*. Within the innermost parsec around the supermassive black hole Sagittarius A* are more than a hundred massive young stars whose orbits align to form one or possibly two discs. At about 100 pc is a ring containing more than ten million solar masses of molecular gas which could be the origin of some of the most massive star clusters in the Galaxy. I have performed a number of numerical simulations to help us understand how it is that these structures may have been formed. I firstly describe and test an improvement to the smoothed particle hydrodynamics code I used. This improves conservation of energy and momentum in certain situations such as in strong shocks from supernovae, which were to be included in a later chapter. The discs of massive stars around Sagittarius A* are believed to have been born there within fragmenting gaseous discs. This is problematic, as the formation of two stellar discs would require two gaseous counterparts. A method is described of forming multiple discs around a black hole from a single cloud's infall and subsequent tidal destruction. This is due to its prolate shape providing a naturally large distribution in the direction of the angular momentum vectors within the cloud. The resulting discs may then go on to form stars. Energetically, it would appear that a sequence of supernovae could potentially cause a giant molecular cloud to fall inwards towards the central black hole from an originally large orbit around the Galactic Centre. I simulate the impact on a giant molecular cloud of supernovae originating from a massive stellar cluster located a parsec away. Ultimately, the supernovae are found to have little effect. Finally, I simulate the formation of the dense ring of clouds observed in the Central Molec- ular Zone at a distance of about 100 pc from Sgr A*. Infalling gas is shown to be subject to such extreme tidal forces that a single cloud of gas is extended to form a long stream. The ribbon grows to the point that it self-intersects and forms a ring-like structure. Its complexity depends on the orbit of the original cloud. The position-velocity data is compared with observations, and similarities are noted.
44

Indirect Searches for Dark Matter in the Milky Way with IceCube-DeepCore

Wolf, Martin January 2016 (has links)
Many astronomical observations, including rotational curve measurements of stars and the analysis of the cosmic microwave background, suggest the existence of an invisible matter density content in the Universe, commonly called Dark Matter (DM). Possibly, DM could be of particle nature, where Weakly Interacting Massive Particles (WIMPs) could be a viable DM candidate. The cubic-kilometer sized IceCube neutrino observatory located at the Earth’s South Pole can search indirectly for the existence of DM by detecting neutrino signals from WIMP self-annihilation in the Galactic center (GC) and the Galactic halo (GH). Two main physics analyses were developed and conducted to search indirectly for WIMP self-annihilation in the Milky Way’s GC and GH. Signal hypotheses for different WIMP annihilation channels, WIMP masses and DM halo profiles were tested. The results of both analyses were compatible with the background-only hypothesis for all tested signal hypotheses. Thus, upper limits at the 90% confidence level (C.L.) on the thermally averaged DM self-annihilation cross-section, &lt;σΑv&gt;, were set. Dedicated atmospheric muon veto techniques have been developed for the GC search making such an IceCube analysis possible for the first time. The GC analysis utilized data from 319.7 days of live-time of the IceCube detector running in its 79-string configuration during 2010 and 2011, whereas the GH analysis utilized pre-existing data samples developed for point-like neutrino sources with a live-time of 1701.9 days between 2008 and 2013. The most stringent upper limits on &lt;σΑv&gt; were obtained for WIMP annihilation directly into a pair of neutrinos assuming a Navarro-Frenk-White (NFW) DM halo profile. Conducting the GC and GH analyses for this annihilation channel an upper limit on &lt;σΑv&gt; as low as 4.0 · 10-24 cm3 s-1 and 4.5 · 10-24 cm3 s-1 is set for a 65 GeV and 500 GeV massive WIMP, respectively. These galactic indirect neutrino searches for DM are complementary to the indirect gamma-ray DM searches usually performed on extra-galactic targets like spheroidal dwarf galaxies. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 2: Manuscript.</p>
45

Etude du disque épais de la Galaxie avec le modèle de la Galaxie de Besançon / Study of the galactic thick disc with the Besançon Galaxy's Model

Nasello, Guillaume 11 October 2018 (has links)
Lors de cette thèse, je me suis servis du modèle de la Galaxie de Besançon (BGM), modèle développé dans ce laboratoire depuis plusieurs années.Ce modèle, fortement utilisé par la communauté internationale (papier de référence Robin, Reylé et al, 2003, cité plus de 1250 fois), a été choisi comme modèle de référence dans la préparation de la mission spatiale de l’ESA Gaia.Ce modèle est un outil puissant pour étudier notre Galaxie car il permet de simuler statistiquement son contenu en étoiles. Ce contenu dépendant d'hypothèses émies sur la forme et l'histoire de la Voie Lactée.Ici, je me concentre sur une population de la Voie Lactée particulière, le disque épais (un ensemble d'étoiles vieilles qui représente environ 30% des étoiles de notre Voie Lactée).A l'aide du BGM, il est possible d’essayer de mieux comprendre sa forme et son histoire. La méthode utilisée pendant cette thèse est la comparaison d'observations avec les simulations du BGM et d'un ajustement des propriétés du disque épais à l'aide d’une méthode basée sur le principe des chaînes de Markov - Monte Carlo (MCMC). / During my Phd thesis, I have used the Besançon Galaxy's Model (BGM) developed in my laboratory for many years.This model is widely use by astrophysicist around the world (the reference article is Robin, Reylé et al, 2003 and is cited more than 1250 times) and have been chose to be the reference model to prepare ESA's space mission Gaia.The BGM allow us to study our Galaxy by simulating statistically her stellar content. This stellar content is depending of hypothesis for the shape and history of the Milky Way.Here, I focus on the Milky Way's thick disc (old stars representing about 30 % of the total stellar content of the Milky Way).Thanks to the BGM, we can try to understand the shape and history of the thick disc. During this thesis, I've compared observation and simulations made by the BGM and adjusted the thick disc properties by using a Markov chain of Monte Carlo (MCMC).
46

Chemical gradients in the Milky Way from unsupervised chemical abundances measurements of the RAVE spectroscopic data set

Boeche, Corrado January 2011 (has links)
The present thesis was born and evolved within the RAdial Velocity Experiment (RAVE) with the goal of measuring chemical abundances from the RAVE spectra and exploit them to investigate the chemical gradients along the plane of the Galaxy to provide constraints on possible Galactic formation scenarios. RAVE is a large spectroscopic survey which aims to observe spectroscopically ~10^6 stars by the end of 2012 and measures their radial velocities, atmospheric parameters and chemical abundances. The project makes use of the UK Schmidt telescope at Australian Astronomical Observatory (AAO) in Siding Spring, Australia, equipped with the multiobject spectrograph 6dF. To date, RAVE collected and measured more than 450,000 spectra. The precision of the chemical abundance estimations depends on the reliability of the atomic and atmosphere parameters adopted (in particular the oscillator strengths of the absorption lines and the effective temperature, gravity, and metallicity of the stars measured). Therefore we first identified 604 absorption lines in the RAVE wavelength range and refined their oscillator strengths with an inverse spectral analysis. Then, we improved the RAVE stellar parameters by modifying the RAVE pipeline and the spectral library the pipeline rely on. The modifications removed some systematic errors in stellar parameters discovered during this work. To obtain chemical abundances, we developed two different processing pipelines. Both of them perform chemical abundances measurements by assuming stellar atmospheres in Local Thermodynamic Equilibrium (LTE). The first one determines elements abundances from equivalent widths of absorption lines. Since this pipeline showed poor sensibility on abundances relative to iron, it has been superseded. The second one exploits the chi^2 minimization technique between observed and model spectra. Thanks to its precision, it has been adopted for the creation of the RAVE chemical catalogue. This pipeline provides abundances with uncertains of about ~0.2dex for spectra with signal-to-noise ratio S/N>40 and ~0.3dex for spectra with 20>S/N>40. For this work, the pipeline measured chemical abundances up to 7 elements for 217,358 RAVE stars. With these data we investigated the chemical gradients along the Galactic radius of the Milky Way. We found that stars with low vertical velocities |W| (which stay close to the Galactic plane) show an iron abundance gradient in agreement with previous works (~-0.07$ dex kpc^-1) whereas stars with larger |W| which are able to reach larger heights above the Galactic plane, show progressively flatter gradients. The gradients of the other elements follow the same trend. This suggests that an efficient radial mixing acts in the Galaxy or that the thick disk formed from homogeneous interstellar matter. In particular, we found hundreds of stars which can be kinetically classified as thick disk stars exhibiting a chemical composition typical of the thin disk. A few stars of this kind have already been detected by other authors, and their origin is still not clear. One possibility is that they are thin disk stars kinematically heated, and then underwent an efficient radial mixing process which blurred (and so flattened) the gradient. Alternatively they may be a transition population" which represents an evolutionary bridge between thin and thick disk. Our analysis shows that the two explanations are not mutually exclusive. Future follow-up high resolution spectroscopic observations will clarify their role in the Galactic disk evolution. / Die vorliegende Doktorarbeit wurde im Rahmen des RAdial Velocity Experiment (RAVE) angefertigt. Ihr Ziel ist es, chemische Elementhäufigkeiten an RAVE-Spektren zu messen und zur Untersuchung chemischer Gradienten in der Milchstrassenebene zu benutzen, um verschieden Szenarien der Galaxienentstehung einzugrenzen. RAVE ist eine große spektrokopische Durchmusterung, deren Ziel es ist, bis zum Ende des Jahres 2012 insgesamt 10^6 Sterne zu spektroskopieren, um deren Radialgeschwindigkeiten, sternatmosphärische Parameter und chemische Häufigkeiten zu messen. Das Projekt benutzt das UK Schmidt Teleskop am Australian Astronomical Observatory (AAO) in Siding Spring, Australien, welches mit dem Multiobjekt-Spektrographen 6dF bestückt ist. Bis heute hat RAVE die Spektren von mehr als 450,000 Sternen gesammelt und untersucht. Die Genauigkeit, mit der die Elementhäufigkeiten abgeschätzt werden können, hängt von der Zuverlässigkeit der verwendeten Parameter, (insbesondere der Oszillatorstärken der Absorptionslinien sowie von der effektiven Temperatur, Schwerebeschleunigung und der Metallizität des gemessenen Sterns) ab. Daher identifizierten wir zunächst 604 Absorptionslinien im Wellenlängenbereich von RAVE und verbesserten deren Oszillatorstärken durch eine inverse Spektralanalyse. Dann wurden die stellaren Parameter von RAVE verbessert, indem die RAVE Pipeline und die stellaren Parameter, auf denen sie beruht, modifiziert wurden. Die Änderungen eliminierten einen Teil der systematischen Fehler von stellaren Parametern, die im Laufe dieser Arbeit gefunden wurden. Um Elementhäufigkeiten zu bestimmen, haben wir zwei verschiedene Prozessierungs-Pipelines entwickelt. Beide berechnen die Elementhäufigkeiten unter der Annahme von Sternatmosphären im lokalen thermischen Gleichgewicht (local thermal equilibrium, LTE). Die erste Pipeline berechnete Elemenhäufigkeiten anhand der Äquivalentbreiten von Absorptionslinien. Da diese Methode eine geringe Empfindlichkeit für die Elementhäufigeiten relativ zu Eisen erreichte, wurde sie ersetzt. Die neue Pipeline benutzt chi^2-Fits von Modellspektren an die beobachteten Spektren. Dank Ihrer Präzision wurde diese für die Erstellung des RAVE-Katalogs von Elementhäufigkeiten verwendet. Diese Pipeline liefert Elementhäufigkeiten mit einer Genauigkeit von ~0.2dex, während für Spektren mit 20>S/N>40 immerhin noch ~0.3dex Genauigkeit erreicht werden. Für die vorliegende Arbeit wurden für 217.358 Sterne die Häufigkeiten von sieben chemischen Elementen bestimmt. Mit diesen Daten wurde der radiale chemische Gradient unserer Milchstraße untersucht. Wir finden, dass Sterne mit kleinen vertikalen Geschwindigkeiten |W|, die also nahe der galaktischen Ebene bleiben, einen radialen Gradienten der Eisenhäufigkeit zeigen, der mit früheren Studien übereinstimmt (~-0.07 dex Kpc^-1), während Sterne mit großen |W|, also solche, die größere galaktische Höhen erreichen, einen progressiv flachere Gradienten zeigen. Die Gradienten der anderen Element folgen dem gleichen Trend. Das lässt darauf schließen, dass entweder die Durchmischung der galaktischen dicken Scheibe effizient arbeitet oder aber dass die dicke Scheibe aus interstellarer Materie gebildet wurde, die chemisch recht homogen war. Speziell fanden wir hunderte von Sternen, die zwar kinematisch als zur dicken Scheibe zugehörig klassifiziert werden können, die aber die typische chemische Zusammensetzung der dünnen Scheibe aufweisen. Einige wenige dieser Sterne wurden bereits von anderen Autoren entdeckt, aber ihre Herkunft bleibt immer noch unklar. Eine Möglichkeit ist, dass die Sterne der dünnen Scheibe kinematische geheizt werden, sodass sie effizienter radial gemischt werden, was die chemischen Gradienten verwischt und auch flacher macht. Alternativ dazu könnten diese Sterne einer "Übergangspopulation" angehören, welche hinsichtlich der Scheibenevolution die Verbindung zwischen der dünnen und der dicken Scheibe darstellt. Unsere Untersuchung zeigt, dass sich diese beiden Erklärungen gegenseitig nicht ausschließen. Künftige Nachspektroskopierung mit hoher Auflösung wird die Rolle dieser Sterne in der Entwicklungsgeschichte der galaktischen Scheibe aufklären.
47

The Milky Way's Most Luminous Star Clusters: Engines of Galaxy Evolution

Rahman, Mubdi 19 December 2012 (has links)
Massive young star clusters and OB associations (M > 10 000 Msun) dominate the energetic feedback from stars into the interstellar medium. They contain the most massive and luminous stars in the Galaxy, which shape their environments through winds, ionizing flux, radiation pressure, and eventually supernovae, destroying their natal molecular clouds and inflating superbubbles. Few such clusters have been identified in our Galaxy. We systematically investigate the most luminous H II regions, which we identify using the WMAP foreground maps. We find that the 13 most luminous sources produce one-third of the Galaxy’s total ionizing luminosity, all with expected powering populations of M > 40 000 Msun. These populations are grouped in small numbers of clusters or associations for each WMAP source. The emission from these regions is dominated by the diffuse component at large radii (∼10-70 pc) indicating a high leaking fraction of ionizing photons. Using 8 μm maps from Spitzer GLIMPSE and published radio recombination line observations, we resolve the large (> 1◦) WMAP sources into 40 star forming complexes (SFCs) exhibiting shell morphology with evidence of expansion due to a central powering source. We develop a method, based on differential extinction of the galactic disk, to identify the SFC’s powering cluster candidates with 2MASS. We identify 22 cluster candidates within the 40 SFCs having extinctions consistent with their distances. With near-infrared spectroscopy from the New Technology Telescope, we have confirmed the existence of the most massive of these associations, the Dragonfish Association, with M = 100 000 Msun. Of the 50 sampled stars, we identify 2 Luminous Blue Variable candidates, a Wolf-Rayet, and 15 O-type stars, consistent with the yield expected from the candidate contamination rate, verifying the candidate cluster identification method. This investigation doubles the number of massive young star clusters and OB associations known and produces the most complete picture of the upper end of the Galaxy’s cluster mass function to date.
48

A survey for resolved Milky Way dwarf galaxy satellites /

Willman, Beth. January 2003 (has links)
Thesis (Ph. D.)--University of Washington, 2003. / Vita. Includes bibliographical references (p. 161-167).
49

Discovery of Giant Gamma-ray Bubbles in the Milky Way

Su, Meng 09 August 2012 (has links)
Based on data from the Fermi Gamma-ray Space Telescope, we have discovered two gigantic gamma-ray emitting bubble structures in our Milky Way (known as the Fermi bubbles), extending \(\sim 50\) degrees above and below the Galactic center with a width of \(\sim 40\) degrees in longitude. The gamma-ray emission associated with these bubbles has a significantly harder spectrum \((dN/dE \sim E^{-2})\) than the inverse Compton emission from known cosmic ray electrons in the Galactic disk, or the gamma-rays produced by decay of pions from proton-ISM collisions. There is no significant difference in the spectrum or gamma-ray luminosity between the north and south bubbles. The bubbles are spatially correlated with the hard-spectrum microwave excess known as the WMAP haze; we also found features in the ROSAT soft X-ray maps at \(1.5 - 2 keV\) which line up with the edges of the bubbles. The Fermi bubbles are most likely created by some large episode of energy injection in the Galactic center, such as past accretion events onto the central massive black hole, or a nuclear starburst in the last \(\sim 10 Myr\). Study of the origin and evolution of the bubbles also has the potential to improve our understanding of recent energetic events in the inner Galaxy and the high-latitude cosmic ray population. Furthermore, we have recently identified a gamma-ray cocoon feature within the southern bubble, with a jet-like feature along the cocoon's axis of symmetry, and another directly opposite the Galactic center in the north. If confirmed, these jets are the first resolved gamma-ray jets ever seen. / Astronomy
50

The Milky Way's Most Luminous Star Clusters: Engines of Galaxy Evolution

Rahman, Mubdi 19 December 2012 (has links)
Massive young star clusters and OB associations (M > 10 000 Msun) dominate the energetic feedback from stars into the interstellar medium. They contain the most massive and luminous stars in the Galaxy, which shape their environments through winds, ionizing flux, radiation pressure, and eventually supernovae, destroying their natal molecular clouds and inflating superbubbles. Few such clusters have been identified in our Galaxy. We systematically investigate the most luminous H II regions, which we identify using the WMAP foreground maps. We find that the 13 most luminous sources produce one-third of the Galaxy’s total ionizing luminosity, all with expected powering populations of M > 40 000 Msun. These populations are grouped in small numbers of clusters or associations for each WMAP source. The emission from these regions is dominated by the diffuse component at large radii (∼10-70 pc) indicating a high leaking fraction of ionizing photons. Using 8 μm maps from Spitzer GLIMPSE and published radio recombination line observations, we resolve the large (> 1◦) WMAP sources into 40 star forming complexes (SFCs) exhibiting shell morphology with evidence of expansion due to a central powering source. We develop a method, based on differential extinction of the galactic disk, to identify the SFC’s powering cluster candidates with 2MASS. We identify 22 cluster candidates within the 40 SFCs having extinctions consistent with their distances. With near-infrared spectroscopy from the New Technology Telescope, we have confirmed the existence of the most massive of these associations, the Dragonfish Association, with M = 100 000 Msun. Of the 50 sampled stars, we identify 2 Luminous Blue Variable candidates, a Wolf-Rayet, and 15 O-type stars, consistent with the yield expected from the candidate contamination rate, verifying the candidate cluster identification method. This investigation doubles the number of massive young star clusters and OB associations known and produces the most complete picture of the upper end of the Galaxy’s cluster mass function to date.

Page generated in 0.0368 seconds