• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Métodos para o pré-processamento e mineração de grandes volumes de dados multidimensionais e redes complexas / Methods to pre-processing and mining large volumes of multidimensional data and complex networks

Appel, Ana Paula 27 May 2010 (has links)
A mineração de dados é um processo computacionalmente caro, que se apoia no pré-processamento dos dados para aumentar a sua eficiência. As técnicas de redução de elementos do conjunto de dados, principalmente a amostragem de dados se destacam no pré-processamento. Os dados reais são caracterizados pela não uniformidade da distribuição, grande quantidade de atributos e presença de elementos considerados ruídos. Para esse tipo de dado, a amostragem uniforme, na qual cada elemento tem a mesma probabilidade de ser escolhido, é inefiiente. Os dados nos últimos anos, vem passando por transformações. Assim, não só o seu volume tem aumentado significantemente, mas também a maneira de como eles são representados. Os dados usualmente são divididos apenas em dados tradicionais (número e pequenas cadeias de caracteres) e dados complexos (imagens, cadeias de DNA, vídeos, etc). Entretanto, uma representação mais rica, na qual não só os elementos do conjunto são representados mas também a suas ligações, vem sendo amplamente utilizada. Esse novo tipo de dado, chamado rede complexa, fez surgir uma nova área de pesquisa chamada mineração de redes complexas ou de grafos, já que estes são utilizados na representação das redes complexas. Para esta nova área é necessário o desenvolvimento de técnicas que permitam a mineração de grandes redes complexas, isto é, redes com centenas de milhares de elementos(nós) e ligações(arestas). Esta tese teve como objetivo explorar a redução de elementos em conjuntos de dados chamados desbalanceados, isto é, que possuem agrupamentos ou classes de tamanhos bastantes distintos, e que também possuam alta quantidade de atributos e presença de ruídos. Além disso, esta tese também explora a mineração de redes complexas com a extração de padrões e propriedades e o desenvolvimento de algoritmos eficientes para a classificação das redes em reais e sintéticas. Também é proposto a mineração de redes complexas utilizando gerenciadores de base de dados para a mineração de cliques de tamanho 4 e 5 e a apresentação da extensão do coeficiente de clusterização / Data mining is an expensive computational process speeded up by data preprocessing. Data reduction techniques, as data sampling are useful during the data preprocessing. Real data are known for presenting non-uniform data distribution, a large amount of attributes and noise. For this type of data, uniform sampling, which selects elements with the same probability, is inefficient. Over the past years, the data available to mining have been changed. Not only have their volume increased but also data format. Data are usually divided into traditional (number and small chains of character) and complex (images, DNA, videos, etc). However, a rich representation, in which not only elements but also the connections among the elements have been used, is necessary. This new data type, which is called complex network and is usually modeled as a graph, has created a new research area, called graph mining or complex network mining, which requires the development of new mining techniques to allow mining large networks, that is, networks with hundreds of thousands of nodes and edges. The present thesis aims to explore the data reduction in unbalanced data, that is, data that have clusters with very different sizes, a large amount of attributes and noise. It also explores complex network mining with two basic findings: useful new patterns, which allow distinguishing real from synthetic networks and mining cliques of sizes 4 and 5 using database systems, discovering interesting power laws and presenting a new cluster coefficient formula
2

Métodos para o pré-processamento e mineração de grandes volumes de dados multidimensionais e redes complexas / Methods to pre-processing and mining large volumes of multidimensional data and complex networks

Ana Paula Appel 27 May 2010 (has links)
A mineração de dados é um processo computacionalmente caro, que se apoia no pré-processamento dos dados para aumentar a sua eficiência. As técnicas de redução de elementos do conjunto de dados, principalmente a amostragem de dados se destacam no pré-processamento. Os dados reais são caracterizados pela não uniformidade da distribuição, grande quantidade de atributos e presença de elementos considerados ruídos. Para esse tipo de dado, a amostragem uniforme, na qual cada elemento tem a mesma probabilidade de ser escolhido, é inefiiente. Os dados nos últimos anos, vem passando por transformações. Assim, não só o seu volume tem aumentado significantemente, mas também a maneira de como eles são representados. Os dados usualmente são divididos apenas em dados tradicionais (número e pequenas cadeias de caracteres) e dados complexos (imagens, cadeias de DNA, vídeos, etc). Entretanto, uma representação mais rica, na qual não só os elementos do conjunto são representados mas também a suas ligações, vem sendo amplamente utilizada. Esse novo tipo de dado, chamado rede complexa, fez surgir uma nova área de pesquisa chamada mineração de redes complexas ou de grafos, já que estes são utilizados na representação das redes complexas. Para esta nova área é necessário o desenvolvimento de técnicas que permitam a mineração de grandes redes complexas, isto é, redes com centenas de milhares de elementos(nós) e ligações(arestas). Esta tese teve como objetivo explorar a redução de elementos em conjuntos de dados chamados desbalanceados, isto é, que possuem agrupamentos ou classes de tamanhos bastantes distintos, e que também possuam alta quantidade de atributos e presença de ruídos. Além disso, esta tese também explora a mineração de redes complexas com a extração de padrões e propriedades e o desenvolvimento de algoritmos eficientes para a classificação das redes em reais e sintéticas. Também é proposto a mineração de redes complexas utilizando gerenciadores de base de dados para a mineração de cliques de tamanho 4 e 5 e a apresentação da extensão do coeficiente de clusterização / Data mining is an expensive computational process speeded up by data preprocessing. Data reduction techniques, as data sampling are useful during the data preprocessing. Real data are known for presenting non-uniform data distribution, a large amount of attributes and noise. For this type of data, uniform sampling, which selects elements with the same probability, is inefficient. Over the past years, the data available to mining have been changed. Not only have their volume increased but also data format. Data are usually divided into traditional (number and small chains of character) and complex (images, DNA, videos, etc). However, a rich representation, in which not only elements but also the connections among the elements have been used, is necessary. This new data type, which is called complex network and is usually modeled as a graph, has created a new research area, called graph mining or complex network mining, which requires the development of new mining techniques to allow mining large networks, that is, networks with hundreds of thousands of nodes and edges. The present thesis aims to explore the data reduction in unbalanced data, that is, data that have clusters with very different sizes, a large amount of attributes and noise. It also explores complex network mining with two basic findings: useful new patterns, which allow distinguishing real from synthetic networks and mining cliques of sizes 4 and 5 using database systems, discovering interesting power laws and presenting a new cluster coefficient formula
3

Time series data mining using complex networks / Mineração de dados em séries temporais usando redes complexas

Ferreira, Leonardo Nascimento 15 September 2017 (has links)
A time series is a time-ordered dataset. Due to its ubiquity, time series analysis is interesting for many scientific fields. Time series data mining is a research area that is intended to extract information from these time-related data. To achieve it, different models are used to describe series and search for patterns. One approach for modeling temporal data is by using complex networks. In this case, temporal data are mapped to a topological space that allows data exploration using network techniques. In this thesis, we present solutions for time series data mining tasks using complex networks. The primary goal was to evaluate the benefits of using network theory to extract information from temporal data. We focused on three mining tasks. (1) In the clustering task, we represented every time series by a vertex and we connected vertices that represent similar time series. We used community detection algorithms to cluster similar series. Results show that this approach presents better results than traditional clustering results. (2) In the classification task, we mapped every labeled time series in a database to a visibility graph. We performed classification by transforming an unlabeled time series to a visibility graph and comparing it to the labeled graphs using a distance function. The new label is the most frequent label in the k-nearest graphs. (3) In the periodicity detection task, we first transform a time series into a visibility graph. Local maxima in a time series are usually mapped to highly connected vertices that link two communities. We used the community structure to propose a periodicity detection algorithm in time series. This method is robust to noisy data and does not require parameters. With the methods and results presented in this thesis, we conclude that network science is beneficial to time series data mining. Moreover, this approach can provide better results than traditional methods. It is a new form of extracting information from time series and can be easily extended to other tasks. / Séries temporais são conjuntos de dados ordenados no tempo. Devido à ubiquidade desses dados, seu estudo é interessante para muitos campos da ciência. A mineração de dados temporais é uma área de pesquisa que tem como objetivo extrair informações desses dados relacionados no tempo. Para isso, modelos são usados para descrever as séries e buscar por padrões. Uma forma de modelar séries temporais é por meio de redes complexas. Nessa modelagem, um mapeamento é feito do espaço temporal para o espaço topológico, o que permite avaliar dados temporais usando técnicas de redes. Nesta tese, apresentamos soluções para tarefas de mineração de dados de séries temporais usando redes complexas. O objetivo principal foi avaliar os benefícios do uso da teoria de redes para extrair informações de dados temporais. Concentramo-nos em três tarefas de mineração. (1) Na tarefa de agrupamento, cada série temporal é representada por um vértice e as arestas são criadas entre as séries de acordo com sua similaridade. Os algoritmos de detecção de comunidades podem ser usados para agrupar séries semelhantes. Os resultados mostram que esta abordagem apresenta melhores resultados do que os resultados de agrupamento tradicional. (2) Na tarefa de classificação, cada série temporal rotulada em um banco de dados é mapeada para um gráfico de visibilidade. A classificação é realizada transformando uma série temporal não marcada em um gráfico de visibilidade e comparando-a com os gráficos rotulados usando uma função de distância. O novo rótulo é dado pelo rótulo mais frequente nos k grafos mais próximos. (3) Na tarefa de detecção de periodicidade, uma série temporal é primeiramente transformada em um gráfico de visibilidade. Máximos locais em uma série temporal geralmente são mapeados para vértices altamente conectados que ligam duas comunidades. O método proposto utiliza a estrutura de comunidades para realizar a detecção de períodos em séries temporais. Este método é robusto para dados ruidosos e não requer parâmetros. Com os métodos e resultados apresentados nesta tese, concluímos que a teoria da redes complexas é benéfica para a mineração de dados em séries temporais. Além disso, esta abordagem pode proporcionar melhores resultados do que os métodos tradicionais e é uma nova forma de extrair informações de séries temporais que pode ser facilmente estendida para outras tarefas.
4

Time series data mining using complex networks / Mineração de dados em séries temporais usando redes complexas

Leonardo Nascimento Ferreira 15 September 2017 (has links)
A time series is a time-ordered dataset. Due to its ubiquity, time series analysis is interesting for many scientific fields. Time series data mining is a research area that is intended to extract information from these time-related data. To achieve it, different models are used to describe series and search for patterns. One approach for modeling temporal data is by using complex networks. In this case, temporal data are mapped to a topological space that allows data exploration using network techniques. In this thesis, we present solutions for time series data mining tasks using complex networks. The primary goal was to evaluate the benefits of using network theory to extract information from temporal data. We focused on three mining tasks. (1) In the clustering task, we represented every time series by a vertex and we connected vertices that represent similar time series. We used community detection algorithms to cluster similar series. Results show that this approach presents better results than traditional clustering results. (2) In the classification task, we mapped every labeled time series in a database to a visibility graph. We performed classification by transforming an unlabeled time series to a visibility graph and comparing it to the labeled graphs using a distance function. The new label is the most frequent label in the k-nearest graphs. (3) In the periodicity detection task, we first transform a time series into a visibility graph. Local maxima in a time series are usually mapped to highly connected vertices that link two communities. We used the community structure to propose a periodicity detection algorithm in time series. This method is robust to noisy data and does not require parameters. With the methods and results presented in this thesis, we conclude that network science is beneficial to time series data mining. Moreover, this approach can provide better results than traditional methods. It is a new form of extracting information from time series and can be easily extended to other tasks. / Séries temporais são conjuntos de dados ordenados no tempo. Devido à ubiquidade desses dados, seu estudo é interessante para muitos campos da ciência. A mineração de dados temporais é uma área de pesquisa que tem como objetivo extrair informações desses dados relacionados no tempo. Para isso, modelos são usados para descrever as séries e buscar por padrões. Uma forma de modelar séries temporais é por meio de redes complexas. Nessa modelagem, um mapeamento é feito do espaço temporal para o espaço topológico, o que permite avaliar dados temporais usando técnicas de redes. Nesta tese, apresentamos soluções para tarefas de mineração de dados de séries temporais usando redes complexas. O objetivo principal foi avaliar os benefícios do uso da teoria de redes para extrair informações de dados temporais. Concentramo-nos em três tarefas de mineração. (1) Na tarefa de agrupamento, cada série temporal é representada por um vértice e as arestas são criadas entre as séries de acordo com sua similaridade. Os algoritmos de detecção de comunidades podem ser usados para agrupar séries semelhantes. Os resultados mostram que esta abordagem apresenta melhores resultados do que os resultados de agrupamento tradicional. (2) Na tarefa de classificação, cada série temporal rotulada em um banco de dados é mapeada para um gráfico de visibilidade. A classificação é realizada transformando uma série temporal não marcada em um gráfico de visibilidade e comparando-a com os gráficos rotulados usando uma função de distância. O novo rótulo é dado pelo rótulo mais frequente nos k grafos mais próximos. (3) Na tarefa de detecção de periodicidade, uma série temporal é primeiramente transformada em um gráfico de visibilidade. Máximos locais em uma série temporal geralmente são mapeados para vértices altamente conectados que ligam duas comunidades. O método proposto utiliza a estrutura de comunidades para realizar a detecção de períodos em séries temporais. Este método é robusto para dados ruidosos e não requer parâmetros. Com os métodos e resultados apresentados nesta tese, concluímos que a teoria da redes complexas é benéfica para a mineração de dados em séries temporais. Além disso, esta abordagem pode proporcionar melhores resultados do que os métodos tradicionais e é uma nova forma de extrair informações de séries temporais que pode ser facilmente estendida para outras tarefas.

Page generated in 0.0756 seconds