• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Caracterização das rochas hospedeiras e da mineralização sulfetada do Alvo Estrela (Cu-Au), Serra dos Carajás, Pará

Fleck, André January 2005 (has links)
Submitted by William Justo Figueiro (williamjf) on 2015-07-03T14:59:05Z No. of bitstreams: 1 37.pdf: 63816884 bytes, checksum: 4b2d75ac79e16792a520e313bf41b73e (MD5) / Made available in DSpace on 2015-07-03T14:59:05Z (GMT). No. of bitstreams: 1 37.pdf: 63816884 bytes, checksum: 4b2d75ac79e16792a520e313bf41b73e (MD5) Previous issue date: 2005 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / ADIMB - Agência para o Desenvolvimento Tecnológico da Indústria Mineral Brasileira / André Fleck As rochas hospedeiras do Alvo Estrela (Cu-Au), na região da Serra dos Carajás, são andesitos e gabros calcioalcalinos e cogenéticos pertencentes ao Grupo Grão Pará, do Supergrupo Itacaiúnas, formados há 2,7 Ga. As rochas do alvo correspondem a uma seqüência de 400-600m de espessura de andesitos e gabros alterados compostos de hastingsita, Fepargasita, Fe-hornblenda, oligoclásio-andesina, albita, magnetita, biotitas, dravita e schorlita, com menores quantidades de chamosita. Texturas ígneas reliquiares ofítica e subofítica ainda estão preservadas nas rochas. A origem do gabro e do andesito está relacionada a arcos magmáticos, como sugere a razão Sc/Ti do gabro 0,02-2,28 x 10 -3 e 3,25 x 10 -3 - 1,67 x 10 -3 do andesito. A contaminação crustal também é indicada pelo valor negativo do Nd (T)= -3,2. O andesito apresenta maiores conteúdos de ETR (ΣREE = 347 a 1786,12 ppm) do que o gabro (ΣREE = 227,38 a 1028,28 ppm), o quê pode refletir o conteúdo ígneo original ou um estágio avançado de alteração. Esta última hipótese é favorecida pela similaridade entre os padrões das rochas máficas do Alvo Estrela e basaltos e andesitos paleoproterozóicos de Birch Uchi e La Ronge Domain normalizados pelo MORB. As rochas hospedeiras do Alvo Estrela Cu-Au foram afetadas por uma alteração sódico-cálcica inicial seguida por uma alteração potássica, acompanhada de ferrificação e sulfetação, que transformou os protólitos ígneos em rochas ricas em biotita. A alteração sódico-cálcica inicial é representada por hastingsita, Fe-pargasita, Fe-hornblenda, oligoclásioandesina, albita, quartzo, magnetita e menores quantidades de Fe e Mg-biotitas, Fe-epidoto e clorita. A alteração potássica se sobrepõe à alteração sódico-cálcica, sendo composta de siderofilita, biotitas, Fe-epidoto, fluorita, minerais radioativos, quartzo, chamosita, dravita, schorlita, magnetita, calcopirita, pirita, pirrotita, molibdenita e menores quantidades de bornita. O estágio de alteração tardio é representado por greisenização desenvolvida em zonas específicas, principalmente no andesito. A assembléia do greisen é constituída de quartzo, zinnwaldita, Li-muscovita, dravita-schorlita, fluorita, topázio, titanita, F-apatita e clorita. O último estágio de alteração pós-data tanto a mineralização como a greisenização. É marcado por carbonatos junto a fases de baixa temperatura, como calcita, fluorita, chamosita, topázio, quartzo e turmalina. Esta seqüência de alteração sugere que fluidos quentes responsáveis pela alteração potássica e albitização eram oxidados e alcalinos, apresentando altas atividades de K e Cl adicionadas a alta razão Na/Ca. Durante o resfriamento é provável que tenha havido uma diminuição na razão Na/Ca, acompanhada de um aumento na atividade de F, como evidenciado pela maciça presença de fluorita. Raros epidoto e calcita indicam aumento na ix atividade de Ca durante o final do hidrotermalismo. Durante o estágio de greisenização o fluido se tornou reduzido e ácido, permitindo a estabilização de Li-muscovitas e demais fases presentes no greisen. A mineralização sulfetada é epigenética e concentra-se principalmente em veios, brechas e stockworks presentes principalmente no andesito. Os veios e brechas formados em 1,8 Ga são compostos de calcopirita, pirita, bornita (subordinada) molibdenita, além de magnetita, acompanhados da ganga presente nos veios, composta de quartzo, fluorita, albita, siderofilita, turmalinas, epidoto, chamosita, topázio e rara calcita. A alteração hidrotermal, responsável pela mineralização, caracteriza-se inicialmente por um processo de silicificação (pré-mineralização), identificada pela presença de fases como quartzo, albita e magnetita, seguido por um estágio de potassificação, ferrificação e sulfetação, caracterizado pela presença de fases como siderofilita, turmalinas, albita, quartzo, epidoto, fluorita, magnetita, ilmenita, chamosita, calcopirita, pirita, pirrotita, molibdenita com bornita subordinada. A calcopirita substitui a pirita e é,por sua vez substituída por pirrotita. O Au (0,116-0,759%) foi encontrado principalmente na calcopirita. O estágio subseqüente de alteração dos veios (tardi a pós-mineralização) compreende um processo de greisenização incipiente, onde predominam fases cristalinas como quartzo, zinnwaldita, Li-muscovita, turmalinas, fluorita, topázio e clorita. Veios de fluorita, calcita, chamosita, topázio e quartzo pós-datam a mineralização e a greisenização. Temperaturas do geotermômetro da clorita indicam uma média de 235°C para o estágio de greisenização. Esta seqüência de alteração sugere que fluidos quentes, responsáveis pela alteração potássica e albitização eram oxidados, alcalinos e apresentavam uma alta atividade de K e Cl em adição à alta razão Na/Ca. O padrão de preenchimento dos veios também sugere que a fO2 dos fluidos iniciais era compatível com o tampão quartzo-magnetita. Os fluidos, que dominavam os veios com alteração potássica, eram oxidados e provavelmente fracamente alcalinos, tornando-se reduzidos e ácidos, durante o estágio de greisenização. O decréscimo do pH aumentaria a solubilidade da calcopirita, o que pode explicar a menor presença deste sulfeto no greisen. Dados de análises de isótopos de oxigênio realizadas em cristais de quartzo ( 18O = 9,6-10,2‰), clorita ( 18O = 1,2‰ e D-47‰)e biotita ( 18O = 3,7‰ e D-7,8‰) de veios (Z.G. Lindenmayer, com. verbal) sugerem que os fluidos responsáveis pela mineralização possuiam assinaturas metamórficas e que a mistura destes com águas meteóricas tiveram um importante papel no resfriamento do sistema hidrotermal. Esta mistura pode ter reduzido a concentração de cloreto do fluido, diminuindo a solubilidade da calcopirita. / The host rocks for the Estrela Cu-Au deposit in the Serra dos Carajás region are calc alkaline and cogenetic andesites and gabbros of the Grão Pará Group, of the Itacaiunas Supergroup, formed by 2.7 Ga. The deposit is in a 400-600 m thick sequence of altered andesites and gabbros, composed by hastingsite, Fe-pargasite, Fe-hornblende, oligoclaseandesine, albite, quartz, magnetite and biotite, with minor chamosite, dravite and schorlite. Relict ophitic to subophitic igneous textures are still preserved in these rocks. The gabbros and andesites are from magmatic arc origin, as suggested by Sc/Ti ratios of 0.02-2.28 x 10 -3 for the gabbros and 3.25 x 10 -3 - 1.67 x 10 -3 for the andesites. Crustal contamination is also indicated by the Nd (T) negative values of –3.2. The andesites present higher REE content (ΣREE = 347 a 1786.12 ppm) than the gabbros (ΣREE = 227.38 a 1028.28 ppm), which may reflect the original igneous content or an advanced alteration stage. The second possibility is favored by the similarity of the MORB normalized spidergrams of the Estrela mafic rocks and the Archean and Paleoproterozoic Canadian Basalts from Birch Uchi and La Ronge Domain. The host rocks of the Estrela Cu-Au Deposit have been affected by an early calcicsodic alteration followed by a potassic alteration, accompanied by ferrification and sulfidation, which transformed the igneous protoliths into biotite-rich rocks. The early calcicsodic alteration is represented by hastingsite, Fe-pargasite, Fe-hornblende, oligoclaseandesine, albite, quartz, magnetite and minor Fe-biotite, Fe-epidote and chlorite. The potassic alteration overprinted the calcic-sodic mineral assemblage and is caracterized by siderophyllite, biotite, Fe-epidote, fluorite, radioactive minerals, quartz, chamosite, dravite, schorlite, magnetite, chalcopyrite, pyrite, pyrrhotite, molybdenite and minor bornite. The late alteration stage is represented by a greisenization at localized sites, mainly in the andesites. The greisen mineralogy is quartz, zinnwaldite, Li-muscovite, dravite-schorlite, fluorite, topaz, titanite, F-apatite and chlorite. The last alteration stage post dates the mineralization and greisenization. It is marked by calcite, fluorite, chamosite, topaz, quartz and tourmaline. The ore is epigenetic, occurring in vein breccias, stockworks, and also disseminated in the host rocks, mostly in the andesites. The vein and breccia ore formed at about 1.8 Ga and consist of chalcopyrite, pyrite, minor bornite, molybdenite and magnetite along with quartz, fluorite, albite, siderophyillite, tourmaline, epidote, chamosite, topaz and occasionally calcite. Except for the calcic-sodic alteration, the same mineralogy is observed in the vein fillings and host rocks. The older veins, pre dating the ore, are composed by quartz, albite and magnetite, characterizing a silicification process, which is followed by a potassic alteration, accompanied xi by ferrification and sulfidation. The next stage of veins contains siderophyllite, biotite, Feepidote, fluorite, radioactive minerals, quartz, chamosite, dravite, shorlite, magnetite, chalcopyrite, pyrite, pyrrhotite, molybdenite and minor bornite. Chalcopyrite replaces pyrite and is replaced by pyrrhotite. Gold (0.116-0.759%) was found manly in chalcopyrite. The late alteration veins present quartz, zinnwaldite, Li-muscovite, dravite-shorlite, fluorite, topaz, titanite, F-apatite and chlorite. Calcite, fluorite, chamosite, topaz, quartz and tourmaline veins post date the mineralization and greisenization. Chorite geothermometry temperature indicate an average of 235°C for late stage veins. This alteration sequence suggests that hotter fluids, responsible by the potassic alteration and albitization were oxidizing, alkaline and held high K and Cl activities in addition to high Na:Ca ratios. During the cooling path a decreasing in the Na:Ca ratio probably occurred accompanied by a sharp increasing of F activity, as evidenced by the massive presence of fluorite. Rare epidote and calcite attest to the slightly growing Ca activity towards the latest hydrothermal phase. During the greisenization stage the fluids became reducing and acidic permitting the stabilization of the Li-muscovites and the other greisen mineral assemblages. The vein filling pattern also suggests that the fO2 of the early fluids was buffered by Quartz-Magnetite. The fluids dominating the potassic veins were still oxidizing and probably slightly alkalic, turning into reducing and acidic during the greisenization stage. The pH decrease would increase the chalcopyrite solubility, which may explain its scarcity associated to the greisen. 18OSMOW on vein quartz ( 18O = 9.6-10.2‰), chlorite ( 18O = 1.2‰ e D-47‰) and biotite ( 18O = 3.7‰ e D-7.8‰) indicate that the mineralizing fluids were metamorphic in origin and that the mixture of meteoric water played an important role on the cooling hydrothermal system. This mixture may have reduced the chloride concentration in the fluid, decreasing the chalcopyrite solubility.
2

Os depósitos Serrote da Laje e Caboclo (CU-au), Nordeste do Brasil : sulfetos magmáticos hospedados em rochas ricas em magnetita e ilmenita associadas a intrusões máficas-ultramáficas

Canedo, Guilherme Ferreira 08 September 2016 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Geociências, Pós-Graduação em Geologia, 2016. / Submitted by Marianna Gomes (mariannasouza@bce.unb.br) on 2016-12-12T17:04:45Z No. of bitstreams: 1 2016_GuilhermeFerreiraCanedo.pdf: 7453937 bytes, checksum: c9917910be861ede2b3c03675d914619 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2017-01-31T18:10:27Z (GMT) No. of bitstreams: 1 2016_GuilhermeFerreiraCanedo.pdf: 7453937 bytes, checksum: c9917910be861ede2b3c03675d914619 (MD5) / Made available in DSpace on 2017-01-31T18:10:27Z (GMT). No. of bitstreams: 1 2016_GuilhermeFerreiraCanedo.pdf: 7453937 bytes, checksum: c9917910be861ede2b3c03675d914619 (MD5) / Intrusões máfica-ultramáficas são amplamente conhecidas por hospedar depósitos sulfetados de Ni-Cu-EGP formados a partir da segregação e concentração de gotas de um líquido de sulfeto de magmas máficos ou ultramáficos. A assembleia de sulfetos dos depósitos de Ni-Cu-EGP consiste essencialmente de pirrotita, pentlandita e calcopirita. A origem de depósitos sulfetados ricos em Cu hospedados em intrusões máfica-ultramáficas, como os depósitos de Caraíba (Brasil) e Okiep (África do Sul), permanecem como uma questão controversa, com modelos genéticos muito distintos sendo propostos (de magmático a hidrotermal). Este estudo apresenta a descrição de dois depósitos ricos em sulfeto de Cu, hospedados em intrusões máfica-ultramáficas, e discute a origem da mineralização sulfetada. Os depósitos do Serrote da Laje e Caboclo estão localizados na Faixa Sergipana (Província Borborema). As rochas máfica-ultramáficas que hospedam a mineralização de Cu-Au consistem em corpos irregulares de rochas mafica-ultramáficas interpretadas como pequenos diques e/ou pipes. Embora essas intrusões estejam parcialmente modificadas pelo metamorfismo de alto grau e associadas a um tectonismo dúctil, texturas e minerais magmáticos primários estão amplamente preservados. As intrusões máfica-ultramáficas consistem principalmente de ortopiroxenito, magnetitito, norito e gabronorito. A sequência de cristalização consiste em ortopiroxênio e óxidos de Fe-Ti, seguidos por plagioclásio e depois clinopiroxênio. O acamamento destes tipos de rochas é resultante do fracionamento a partir do magma parental, seja em situ ou devido sucessivos pulsos de magmas com fracionamento variável. As composições dos ortopiroxênios variam entre En65,5 a En79,2 mol % indicando composições primitivas a mais fracionadas para o magma parental. Tipos de rochas incomuns com flogopita e/ou granada abundante, comumente associadas com as rochas máfica-ultramáficas, são interpretadas como produto da assimilação das encaixantes gnáissicas durante a ascensão do magma. A assimilação de rochas crustais mais antigas também é consistente com os dados isotópicos de Sm-Nd do depósito Serrote da Laje, indicado pela alta variabilidade e dispersão dos valores de εNd (T = 1.99 Ga) (-4,33 a 3,87). Os sulfetos disseminados nos depósitos Serrote da Laje e Caboclo são intersticiais ou inclusos dentro de piroxênios e óxidos de Fe-Ti cúmulos. A forte associação de magnetita e sulfetos nestes depósitos é indicada pela correlação positiva de FeO e Ti-V nas rochas máfica-ultramáficas hospedeiras, combinadas com a correlação positiva de FeO e S-Cu-Au no minério sulfetado. Características texturais e químicas descritas nos depósitos Serrote da Laje e Caboclo suportam a interpretação que os sulfetos de Cu são magmáticos e diretamente associados com as rochas ricas em magnetita. As assembleias de sulfetos de ambos os depósitos consistem principalmente de bornita e calcopirita, com razão Cu/Fe variando entre 1, em amostras de minério ricas em calcopirita, e 5 em amostras ricas em bornita. Os resultados dos isótopos de enxofre para calcopirita e bornita têm uma estreita gama de valores, entre -1,0 e 2,5 δ34S ‰, suportando a origem magmática do minério. A combinação de cristalização fracionada do magma parental combinada com a oxidação do magma é sugerida como mecanismo apropriado para formar sulfetos magmáticos ricos em Cu com alta razão Cu/Fe dos depósitos Serrote da Laje e Caboclo. Mineralização de Cu sulfetada subordinada ocorre em veios e/ou brechas em rochas máfica-ultramáficas alteradas. Resultados de isótopos de enxofre em pirita, pirrotita e calcopirita de veios ou brechas variam entre 7,5 to 13,0 δ34S ‰, sugerindo origem hidrotermal. Esta mineralização secundária é interpretada como resultado da percolação de fluidos pelas rochas máfica-ultramáficas mineralizadas que remobilizou parcialmente os sulfetos do minério primário. Esta interpretação não indica a existência de uma mineralização hidrotermal de Cu-Au robusta, que poderia indicar diferentes alvos de exploração além dos investigados neste estudo. A idade magmática das rochas máficas-ultramáficas hospedeiras dos depósitos Serrote da Laje (ca. 1,99 Ga) e Caraíba (ca 2,05 Ga) sugerem que importantes depósitos de Cu localizados próximos a borda norte do Cráton do São Francisco estão associados a intrusões Paleoproterozóicas. / Mafic-ultramafic intrusions are widely known for hosting Ni-Cu-PGE sulfide deposits formed as the result of the segregation and concentration of droplets of liquid sulfide from mafic or ultramafic magma. The bulk sulfide assemblage of Ni-Cu-PGE deposits consists essentially of pyrrhotite, pentlandite and chalcopyrite. The origin of Cu-rich sulfide deposits hosted in mafic-ultramafic intrusions, exemplified by the Caraíba (Brazil) and Okiep (South Africa) deposits, remains however a controversial issue, and highly distinct genetic models have been proposed (from magmatic to hydrothermal). This study present the description of two Cu-rich deposits hosted by mafic-ultramafic intrusions and discuss the origin of the sulfide mineralization. The Serrote da Laje and Caboclo deposits are located in the Sergipano Belt (Borborema structural province). The mafic-ultramafic rocks hosting Cu-Au mineralization in the Serrote da Laje and Caboclo deposits consist of irregular bodies of mafic-ultramafic rocks interpreted as small dikes and/or pipes. Although these intrusions are partially modified by high-grade metamorphism and associated ductile tectonism, primary magmatic textures and minerals are largely preserved. Mafic-ultramafic intrusions consist mainly of variably textured orthopyroxenite, magnetitite, norite and gabbronorite. The crystallization sequence consists of orthopyroxene and Fe-Ti oxides followed by plagioclase and then by clinopyroxene. Systematic interlayering of these rock types are consistent with all rock types resulting from fractionation from a parental magma, either in situ or due to successive pulses of variably fractionated magma. Orthopyroxene compositions ranging from En65.5 to En79.22 mol % indicate moderately primitive to fractionated compositions for the parental magma. Unusual rock types with abundant phlogopite and/or garnet, commonly associated with mafic-ultramafic rocks, are interpreted as products of assimilation of country gneissic rocks during magmatic emplacement. Assimilation of older crustal rocks is also consistent with Sm-Nd isotopic data of the Serrote da Laje Complex, as indicated by highly variable and scattered εNd (T = 1.99 Ga) values (-4.33 to 3.87). Disseminated sulfides in both Serrote da Laje and Caboclo deposits are interstitial to or enclosed into cumulus orthopyroxene and Fe-Ti oxides. The close association of magnetite and sulfides in the Serrote da Laje deposit is indicated by positive correlations of FeO and Ti-V in hosted mafic-ultramafic rocks matched with positive correlations of FeO and S-Cu-Au in sulfide ore. Textural and chemical features described in the Serrote da Laje and Caboclo deposits support the interpretation that Cu-rich sulfides are magmatic and closely associated with magnetite-rich rocks. The sulfide assemblages in both deposits consist mainly of bornite and chalcopyrite, with Cu/Fe ratio in sulfides ranging from about 1 in chalcopyrite-rich ore samples to about 5 in bornite-rich samples. Sulfur isotope results for chalcopyrite and bornite has a narrow range of values from -1.0 to 2.5 δ34S ‰, thus supporting a magmatic origin for the ore. A fractional crystallization of the parental magma combined with magmatic oxidation is suggested as an appropriate mechanism to generate the Cu-rich magmatic sulfides with high Cu/Fe ratios of the Serrote da Laje and Caboclo deposits. Subordinated Cu-sulfide mineralization occurs in veins and/or breccia in altered mafic-ultramafic rocks. Sulfur isotope results for pyrite, pyrrhotite and chalcopyrite in veins or breccia range from 7.5 to 13.0 δ34S ‰, suggesting a hydrothermal origin. This secondary ore is interpreted as the result of sulfides from hydrothermal fluids that percolate the Cu-Au mineralized mafic-ultramafic rocks and partially remobilized the primary ore. This interpretation does not indicate the existence of a robust Cu-Au hydrothermal mineralization that may lead to different exploration targets than those investigated in this study. Close magmatic ages of mafic-ultramafic rocks of the Serrote da Laje deposit (ca. 1.99 Ga) and the Caraíba deposit (ca. 2.05) suggest that significant Cu deposits are associated with Paleoproterozoic mafic-ultramafic intrusions in the region located close to the northern border of the São Francisco Craton in Brazil.

Page generated in 0.0514 seconds