Spelling suggestions: "subject:"inimum hellinger 2distance"" "subject:"inimum hellinger 4distance""
1 |
A Differential Geometry-Based Algorithm for Solving the Minimum Hellinger Distance EstimatorD'Ambrosio, Philip 28 May 2008 (has links)
Robust estimation of statistical parameters is traditionally believed to exist in a trade space between robustness and efficiency. This thesis examines the Minimum Hellinger Distance Estimator (MHDE), which is known to have desirable robustness properties as well as desirable efficiency properties. This thesis confirms that the MHDE is simultaneously robust against outliers and asymptotically efficient in the univariate location case. Robustness results are then extended to the case of simple linear regression, where the MHDE is shown empirically to have a breakdown point of 50%. A geometric algorithm for solution of the MHDE is developed and implemented. The algorithm utilizes the Riemannian manifold properties of the statistical model to achieve an algorithmic speedup. The MHDE is then applied to an illustrative problem in power system state estimation. The power system is modeled as a structured linear regression problem via a linearized direct current model; robustness results in this context have been investigated and future research areas have been identified from both a statistical perspective as well as an algorithm design standpoint. / Master of Science
|
2 |
Minimum Hellinger distance estimation in a semiparametric mixture modelXiang, Sijia January 1900 (has links)
Master of Science / Department of Statistics / Weixin Yao / In this report, we introduce the minimum Hellinger distance (MHD) estimation method and review its history. We examine the use of Hellinger distance to obtain a new efficient and robust estimator for a class of semiparametric mixture models where one component has known distribution while the other component and the mixing proportion are unknown. Such semiparametric mixture models have been used in biology and the sequential clustering algorithm. Our new estimate is based on the MHD, which has been shown to have good efficiency and robustness
properties. We use simulation studies to illustrate the finite sample performance of the proposed estimate and compare it to some other existing approaches. Our empirical studies demonstrate that the proposed minimum Hellinger distance estimator (MHDE) works at least as well as some existing estimators for most of the examples considered and outperforms the existing estimators when the data are under contamination. A real data set application is also provided to illustrate the effectiveness of our proposed methodology.
|
3 |
Estimação de modelos DSGE usando verossimilhança empírica e mínimo contraste generalizados / DSGE Estimation using Generalized Empirical Likelihood and Generalized Minimum ContrastBoaretto, Gilberto Oliveira 05 March 2018 (has links)
O objetivo deste trabalho é investigar o desempenho de estimadores baseados em momentos das famílias verossimilhança empírica generalizada (GEL) e mínimo contraste generalizado (GMC) na estimação de modelos de equilíbrio geral dinâmico e estocástico (DSGE), com enfoque na análise de robustez sob má-especificação, recorrente neste tipo de modelo. Como benchmark utilizamos método do momentos generalizado (GMM), máxima verossimilhança (ML) e inferência bayesiana (BI). Trabalhamos com um modelo de ciclos reais de negócios (RBC) que pode ser considerado o núcleo de modelos DSGE, apresenta dificuldades similares e facilita a análise dos resultados devido ao menor número de parâmetros. Verificamos por meio de experimentos de Monte Carlo se os estimadores estudados entregam resultados satisfatórios em termos de média, mediana, viés, erro quadrático médio, erro absoluto médio e verificamos a distribuição das estimativas geradas por cada estimador. Dentre os principais resultados estão: (i) o estimador verossimilhança empírica (EL) - assim como sua versão com condições de momento suavizadas (SEL) - e a inferência bayesiana (BI) foram, nesta ordem, os que obtiveram os melhores desempenhos, inclusive nos casos de especificação incorreta; (ii) os estimadores continous updating empirical likelihood (CUE), mínima distância de Hellinger (HD), exponential tilting (ET) e suas versões suavizadas apresentaram desempenho comparativo intermediário; (iii) o desempenho dos estimadores exponentially tilted empirical likelihood (ETEL), exponential tilting Hellinger distance (ETHD) e suas versões suavizadas foi bastante comprometido pela ocorrência de estimativas atípicas; (iv) as versões com e sem suavização das condições de momento dos estimadores das famílias GEL/GMC apresentaram desempenhos muito similares; (v) os estimadores GMM, principalmente no caso sobreidentificado, e ML apresentaram desempenhos consideravelmente abaixo de boa parte de seus concorrentes / The objective of this work is to investigate the performance of moment-based estimators of the generalized empirical likelihood (GEL) and generalized minimum contrast (GMC) families in the estimation of dynamic stochastic general equilibrium (DSGE) models, focusing on the robustness analysis under misspecification, recurrent in this model. As benchmark we used generalized method of moments (GMM), maximum likelihood (ML) and Bayesian inference (BI). We work with a real business cycle (RBC) model that can be considered the core of DSGE models, presents similar difficulties and facilitates the analysis of results due to lower number of parameters. We verified, via Monte Carlo experiments, whether the studied estimators presented satisfactory results in terms of mean, median, bias, mean square error, mean absolute error and we verified the distribution of the estimates generated by each estimator. Among the main results are: (i) empirical likelihood (EL) estimator - as well as its version with smoothed moment conditions (SEL) - and Bayesian inference (BI) were, in that order, the ones that obtained the best performances, even in misspecification cases; (ii) continuous updating empirical likelihood (CUE), minimum Hellinger distance (HD), exponential tilting (ET) estimators and their smoothed versions exhibit intermediate comparative performance; (iii) performance of exponentially tilted empirical likelihood (ETEL), exponential tilting Hellinger distance (ETHD) and its smoothed versions was seriously compromised by atypical estimates; (iv) smoothed and non-smoothed GEL/GMC estimators exhibit very similar performances; (v) GMM, especially in the over-identified case, and ML estimators had lower performance than their competitors
|
4 |
Estimação de modelos DSGE usando verossimilhança empírica e mínimo contraste generalizados / DSGE Estimation using Generalized Empirical Likelihood and Generalized Minimum ContrastGilberto Oliveira Boaretto 05 March 2018 (has links)
O objetivo deste trabalho é investigar o desempenho de estimadores baseados em momentos das famílias verossimilhança empírica generalizada (GEL) e mínimo contraste generalizado (GMC) na estimação de modelos de equilíbrio geral dinâmico e estocástico (DSGE), com enfoque na análise de robustez sob má-especificação, recorrente neste tipo de modelo. Como benchmark utilizamos método do momentos generalizado (GMM), máxima verossimilhança (ML) e inferência bayesiana (BI). Trabalhamos com um modelo de ciclos reais de negócios (RBC) que pode ser considerado o núcleo de modelos DSGE, apresenta dificuldades similares e facilita a análise dos resultados devido ao menor número de parâmetros. Verificamos por meio de experimentos de Monte Carlo se os estimadores estudados entregam resultados satisfatórios em termos de média, mediana, viés, erro quadrático médio, erro absoluto médio e verificamos a distribuição das estimativas geradas por cada estimador. Dentre os principais resultados estão: (i) o estimador verossimilhança empírica (EL) - assim como sua versão com condições de momento suavizadas (SEL) - e a inferência bayesiana (BI) foram, nesta ordem, os que obtiveram os melhores desempenhos, inclusive nos casos de especificação incorreta; (ii) os estimadores continous updating empirical likelihood (CUE), mínima distância de Hellinger (HD), exponential tilting (ET) e suas versões suavizadas apresentaram desempenho comparativo intermediário; (iii) o desempenho dos estimadores exponentially tilted empirical likelihood (ETEL), exponential tilting Hellinger distance (ETHD) e suas versões suavizadas foi bastante comprometido pela ocorrência de estimativas atípicas; (iv) as versões com e sem suavização das condições de momento dos estimadores das famílias GEL/GMC apresentaram desempenhos muito similares; (v) os estimadores GMM, principalmente no caso sobreidentificado, e ML apresentaram desempenhos consideravelmente abaixo de boa parte de seus concorrentes / The objective of this work is to investigate the performance of moment-based estimators of the generalized empirical likelihood (GEL) and generalized minimum contrast (GMC) families in the estimation of dynamic stochastic general equilibrium (DSGE) models, focusing on the robustness analysis under misspecification, recurrent in this model. As benchmark we used generalized method of moments (GMM), maximum likelihood (ML) and Bayesian inference (BI). We work with a real business cycle (RBC) model that can be considered the core of DSGE models, presents similar difficulties and facilitates the analysis of results due to lower number of parameters. We verified, via Monte Carlo experiments, whether the studied estimators presented satisfactory results in terms of mean, median, bias, mean square error, mean absolute error and we verified the distribution of the estimates generated by each estimator. Among the main results are: (i) empirical likelihood (EL) estimator - as well as its version with smoothed moment conditions (SEL) - and Bayesian inference (BI) were, in that order, the ones that obtained the best performances, even in misspecification cases; (ii) continuous updating empirical likelihood (CUE), minimum Hellinger distance (HD), exponential tilting (ET) estimators and their smoothed versions exhibit intermediate comparative performance; (iii) performance of exponentially tilted empirical likelihood (ETEL), exponential tilting Hellinger distance (ETHD) and its smoothed versions was seriously compromised by atypical estimates; (iv) smoothed and non-smoothed GEL/GMC estimators exhibit very similar performances; (v) GMM, especially in the over-identified case, and ML estimators had lower performance than their competitors
|
Page generated in 0.0927 seconds