• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cross-language acoustic adaptation for automatic speech recognition

Nieuwoudt, Christoph 06 January 2005 (has links)
Speech recognition systems have been developed for the major languages of the world, yet for the majority of languages there are currently no large vocabulary continuous speech recognition (LVCSR) systems. The development of an LVCSR system for a new language is very costly, mainly because a large speech database has to be compiled to robustly capture the acoustic characteristics of the new language. This thesis investigates techniques that enable the re-use of acoustic information from a source language, in which a large amount of data is available, in implementing a system for a new target language. The assumption is that too little data is available in the target language to train a robust speech recognition system on that data alone, and that use of acoustic information from a source language can improve the performance of a target language recognition system. Strategies for cross-language use of acoustic information are proposed, including training on pooled source and target language data, adaptation of source language models using target language data, adapting multilingual models using target language data and transforming source language data to augment target language data for model training. These strategies are allied with Bayesian and transformation-based techniques, usually used for speaker adaptation, as well as with discriminative learning techniques, to present a framework for cross-language re-use of acoustic information. Extensions to current adaptation techniques are proposed to improve the performance of these techniques specifically for cross-language adaptation. A new technique for transformation-based adaptation of variance parameters and a cost-based extension of the minimum classification error (MCE) approach are proposed. Experiments are performed for a large number of approaches from the proposed framework for cross-language re-use of acoustic information. Relatively large amounts of English speech data are used in conjunction with smaller amounts of Afrikaans speech data to improve the performance of an Afrikaans speech recogniser. Results indicate that a significant reduction in word error rate (between 26% and 50%, depending on the amount of Afrikaans data available) is possible when English acoustic data is used in addition to Afrikaans speech data from the same database (i.e both sets of data were recorded under the same c`12onditions and the same labelling process was used). For same-database experiments, best results are achieved for approaches that train models on pooled source and target language data and then perform further adaptation of the models using Bayesian or discriminative techniques on target language data only. Experiments are also performed to evaluate the use of English data from a different database than the Afrikaans data. Peak reductions in word error rate of between 16% and 35% are delivered, depending on the amount of Afrikaans data available. Best results are achieved for an approach that performs a simple transformation of source model parameters using target language data, and then performs Bayesian adaptation of the transformed model on target language data. / Thesis (PhD (Electrical, Electronic and Computer Engineering))--University of Pretoria, 2006. / Electrical, Electronic and Computer Engineering / unrestricted
2

Feature Extraction and Dimensionality Reduction in Pattern Recognition and Their Application in Speech Recognition

Wang, Xuechuan, n/a January 2003 (has links)
Conventional pattern recognition systems have two components: feature analysis and pattern classification. Feature analysis is achieved in two steps: parameter extraction step and feature extraction step. In the parameter extraction step, information relevant for pattern classification is extracted from the input data in the form of parameter vector. In the feature extraction step, the parameter vector is transformed to a feature vector. Feature extraction can be conducted independently or jointly with either parameter extraction or classification. Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) are the two popular independent feature extraction algorithms. Both of them extract features by projecting the parameter vectors into a new feature space through a linear transformation matrix. But they optimize the transformation matrix with different intentions. PCA optimizes the transformation matrix by finding the largest variations in the original feature space. LDA pursues the largest ratio of between-class variation and within-class variation when projecting the original feature space to a subspace. The drawback of independent feature extraction algorithms is that their optimization criteria are different from the classifier’s minimum classification error criterion, which may cause inconsistency between feature extraction and the classification stages of a pattern recognizer and consequently, degrade the performance of classifiers. A direct way to overcome this problem is to conduct feature extraction and classification jointly with a consistent criterion. Minimum classification Error (MCE) training algorithm provides such an integrated framework. MCE algorithm was first proposed for optimizing classifiers. It is a type of discriminative learning algorithm but achieves minimum classification error directly. The flexibility of the framework of MCE algorithm makes it convenient to conduct feature extraction and classification jointly. Conventional feature extraction and pattern classification algorithms, LDA, PCA, MCE training algorithm, minimum distance classifier, likelihood classifier and Bayesian classifier, are linear algorithms. The advantage of linear algorithms is their simplicity and ability to reduce feature dimensionalities. However, they have the limitation that the decision boundaries generated are linear and have little computational flexibility. SVM is a recently developed integrated pattern classification algorithm with non-linear formulation. It is based on the idea that the classification that a.ords dot-products can be computed efficiently in higher dimensional feature spaces. The classes which are not linearly separable in the original parametric space can be linearly separated in the higher dimensional feature space. Because of this, SVM has the advantage that it can handle the classes with complex nonlinear decision boundaries. However, SVM is a highly integrated and closed pattern classification system. It is very difficult to adopt feature extraction into SVM’s framework. Thus SVM is unable to conduct feature extraction tasks. This thesis investigates LDA and PCA for feature extraction and dimensionality reduction and proposes the application of MCE training algorithms for joint feature extraction and classification tasks. A generalized MCE (GMCE) training algorithm is proposed to mend the shortcomings of the MCE training algorithms in joint feature and classification tasks. SVM, as a non-linear pattern classification system is also investigated in this thesis. A reduced-dimensional SVM (RDSVM) is proposed to enable SVM to conduct feature extraction and classification jointly. All of the investigated and proposed algorithms are tested and compared firstly on a number of small databases, such as Deterding Vowels Database, Fisher’s IRIS database and German’s GLASS database. Then they are tested in a large-scale speech recognition experiment based on TIMIT database.
3

Objective-driven discriminative training and adaptation based on an MCE criterion for speech recognition and detection

Shin, Sung-Hwan 13 January 2014 (has links)
Acoustic modeling in state-of-the-art speech recognition systems is commonly based on discriminative criteria. Different from the paradigm of the conventional distribution estimation such as maximum a posteriori (MAP) and maximum likelihood (ML), the most popular discriminative criteria such as MCE and MPE aim at direct minimization of the empirical error rate. As recent ASR applications become diverse, it has been increasingly recognized that realistic applications often require a model that can be optimized for a task-specific goal or a particular scenario beyond the general purposes of the current discriminative criteria. These specific requirements cannot be directly handled by the current discriminative criteria since the objective of the criteria is to minimize the overall empirical error rate. In this thesis, we propose novel objective-driven discriminative training and adaptation frameworks, which are generalized from the minimum classification error (MCE) criterion, for various tasks and scenarios of speech recognition and detection. The proposed frameworks are constructed to formulate new discriminative criteria which satisfy various requirements of the recent ASR applications. In this thesis, each objective required by an application or a developer is directly embedded into the learning criterion. Then, the objective-driven discriminative criterion is used to optimize an acoustic model in order to achieve the required objective. Three task-specific requirements that the recent ASR applications often require in practice are mainly taken into account in developing the objective-driven discriminative criteria. First, an issue of individual error minimization of speech recognition is addressed and we propose a direct minimization algorithm for each error type of speech recognition. Second, a rapid adaptation scenario is embedded into formulating discriminative linear transforms under the MCE criterion. A regularized MCE criterion is proposed to efficiently improve the generalization capability of the MCE estimate in a rapid adaptation scenario. Finally, the particular operating scenario that requires a system model optimized at a given specific operating point is discussed over the conventional receiver operating characteristic (ROC) optimization. A constrained discriminative training algorithm which can directly optimize a system model for any particular operating need is proposed. For each of the developed algorithms, we provide an analytical solution and an appropriate optimization procedure.

Page generated in 0.1383 seconds