Spelling suggestions: "subject:"minining haulage"" "subject:"chanining haulage""
1 |
Vibration problems of skips in mine shafts : the effect of compressive forces in the guidesPretorius, T S January 1989 (has links)
Investigations into problems involving the vibration of conveyances in deep mining shafts have led to the identification of 'slamming' as a significant event in the initiation of large perturbations in the motion of the skip. Slamming occurs when the flexible rollers on the skip which normally act on the guides are inoperative. The primary concern is that this slamming event can give rise to large lateral loads on the shaft steelwork and is therefore a factor which limits the speed at which the skip can be drawn up the shaft. This study extends previous work to investigate the influence of compressive forces in the guides on the response of the skip and the steelwork. These forces are induced as a result of mining operations and lead to a decrease in the transverse stiffness of the guides. A mathematical model of the slamming event is formulated and a numerical solution for a specific case is performed. An alternative simplified solution is discussed and compared to the initial formulation, with the aim of facilitating the use of previous research results. A model to simulate the response of the skip when the skip rollers are functional is formulated, and numerical solutions of different examples are given. An important conclusion is that the compressive forces can significantly reduce the transverse stiffness of the guides, and should be taken into account in future designs. Bibliography: pages 86-88.
|
2 |
Evaluating the Normal Accident Theory in Complex Systems as a Predictive Approach to Mining Haulage Operations SafetyDo, Michael D. January 2012 (has links)
The Normal Accident Theory (NAT) attempts to understand why accidents occur in systems with high-risk technologies. NAT is characterized by two attributes: complexity and coupling. The combination of these attributes results in unplanned and unintended catastrophic consequences. High-risk technology systems that are complex and tightly coupled have a high probability of experiencing system failures. The mining industry has experienced significant incidents involving haulage operations up to and including severe injuries and fatalities. Although the mining industry has dramatically reduced fatalities and lost time accidents over the last three decades or more, accidents still continue to persist. For example, for the years 1998 - 2002, haulage operations in surface mines alone have accounted for over 40% of all accidents in the mining industry. The systems thinking was applied as an approach to qualitatively and quantitatively evaluate NAT in mining haulage operations. A measurement index was developed to measure this complexity. The results from the index measurements indicated a high degree of complexity that exists in haulage transfer systems than compared to loading and unloading systems. Additionally, several lines of evidence also point to the applicability of NAT in mining systems. They include strong organizational management or safety system does not guarantee zero accidents, complexity is exhibited in mining systems, and they are interactive and tightly coupled systems. Finally, the complexity of these systems were assessed with results indicating that a large number of accidents occur when there are between 4 or 5 causal factors. These factors indicate the degree of complexity necessary before accidents begin to occur.
|
Page generated in 0.0687 seconds