Spelling suggestions: "subject:"minining software repository"" "subject:"chanining software repository""
1 |
[en] ON THE RELATION BETWEEN REFACTORING AND CRITICAL INTERNAL ATTRIBUTES WHEN EVOLVING SOFTWARE FEATURES / [pt] SOBRE A RELAÇÃO ENTRE REFATORAÇÃO E ATRIBUTOS INTERNOS CRÍTICOS AO EVOLUIR FUNCIONALIDADES DE SOFTWAREEDUARDO MOREIRA FERNANDES 07 June 2021 (has links)
[pt] Contexto: Várias mudanças de código aplicadas ao evoluir funcionalidades visam melhorar atributos internos de qualidade como coesão. Tais mudanças são as refatorações. Refatorações não dirigidas podem piorar, e não melhorar, atributos internos. Porém, o saber atual é insuficiente para gerir atributos internos durante a evolução do sistema. Objetivo: Nosso primeiro objetivo é entender como refatorações afetam atributos internos ao evoluir sistemas, mitigando limitações de escopo de estudos anteriores. Nosso segundo objetivo é atender uma carência por evidência quantitativa sobre como gerir atributos internos críticos via refatorações ao evoluir sistemas. Um atributo interno é crítico se sua medição assume valores anômalos. Baixa coesão é um exemplo de atributo crítico. Método: O primeiro estudo
estende uma avaliação quantitativa da relação entre refatorações e cinco atributos internos: acoplamento, coesão, complexidade, herança e tamanho. Incluímos novas análises e resolvemos ameaças à validade da literatura. O segundo estudo contém estudos de caso qualitativos baseados em grupo focal.
Em dois casos industriais, promovemos discussões sobre o quanto (e por que) atributos críticos são relevante ao evoluir funcionalidades. Por fim, cruzamos os achados dos dois estudos para discutir como gerir atributos críticos via refatoração ao evoluir funcionalidades. Resultados: Aproximadamente
64 por cento das refatorações melhoram ou não afetam os atributos internos. Desenvolvedores parecem refatorar até melhorar os atributos mais relevantes, ignorando outros atributos internos possivelmente críticos. Baixa coesão e alta complexidade são percebidos como relevantes e tornam mais difícil evoluir
funcionalidades. Alto acoplamento, herança larga e tamanho largo são percebidos como irrelevantes ao implementar funcionalidades especialmente complexas, por exemplo. Ao cruzar dados entre estudos, discutimos como refatorações podem melhorar atributos internos, inclusive atributos críticos. Conclusões: Os achados dos nossos estudos podem apoiar a gestão de atributos críticos relevantes aos desenvolvedores, mas também preservar outros atributos que podem se tornar críticos. / [en] Context: Several software changes applied while evolving software features aim at improving internal quality attributes, e.g. cohesion. These changes are the refactorings. Non-assisted refactorings might worsen, rather than improve, internal attributes. However, current knowledge is insufficient for managing internal attributes during software evolution. Objective: Our first objective is assessing how refactorings affect internal attributes during software evolution by filling gaps of past work on study scope.
Our second objective is filling gaps of qualitative evidence on how to manage critical internal attributes via refactorings while evolving features. An internal attribute is critical when its measurement has anomalous
values. Low cohesion is an example of critical attribute. Method: Our first study extends a large quantitative assessment of the relationship between refactorings and five internal attributes: cohesion, complexity, coupling, inheritance, and size. We include a more detailed statistical analysis and address major threats to validity of past work. Our second study is a qualitative case study based on focus group. We selected two industry cases to promote discussions on how much (and why) critical attributes are relevant while evolving features. Finally, we crossed the findings from both conducted studies aimed at discussing how critical attributes can be addressed via refactoring when evolving features. Results: About 64 per cent of refactorings either improve or keep the internal attributes unaffected. Developers seem to perform refactorings until the most relevant internal attributes are improved, thereby neglecting other internal attributes that may be critical. Low cohesion and high complexity are perceived as relevant because they often make evolving features harder than usual. High coupling, large inheritance, and large size are perceived as irrelevant when developers implement especially complex features. By crossing the
findings from both studies, we discuss how refactorings can improve internal attributes, especially the critical ones. Conclusions: The findings of our studies can support managing critical attributes that developers typically find relevant, while preserving other attributes that may become critical.
|
2 |
Predição de mudanças conjuntas de artefatos de software com base em informações contextuais / Predicting co-changes of software artifacts based on contextual informationWiese, Igor Scaliante 18 March 2016 (has links)
O uso de abordagens de predição de mudanças conjuntas auxilia os desenvolvedores a encontrar artefatos que mudam conjuntamente em uma tarefa. No passado, pesquisadores utilizaram análise estrutural para construir modelos de predição. Mais recentemente, têm sido propostas abordagens que utilizam informações históricas e análise textual do código fonte. Apesar dos avanços obtidos, os desenvolvedores de software ainda não usam essas abordagens amplamente, presumidamente por conta do número de falsos positivos. A hipótese desta tese é que informações contextuais obtidas das tarefas, da comunicação dos desenvolvedores e das mudanças dos artefatos descrevem as circunstâncias e condições em que as mudanças conjuntas ocorrem e podem ser utilizadas para realizar a predição de mudanças conjuntas. O objetivo desta tese consiste em avaliar se o uso de informações contextuais melhora a predição de mudanças conjuntas entre dois arquivos em relação às regras de associação, que é uma estratégia frequentemente usada na literatura. Foram construídos modelos de predição específicos para cada par de arquivos, utilizando as informações contextuais em conjunto com o algoritmo de aprendizagem de máquina random forest. Os modelos de predição foram avaliados em 129 versões de 10 projetos de código aberto da Apache Software Foundation. Os resultados obtidos foram comparados com um modelo baseado em regras de associação. Além de avaliar o desempenho dos modelos de predição também foram investigadas a influência do modo de agrupamento dos dados para construção dos conjuntos de treinamento e teste e a relevância das informações contextuais. Os resultados indicam que os modelos baseados em informações contextuais predizem 88% das mudanças corretamente, contra 19% do modelo de regras de associação, indicando uma precisão 3 vezes maior. Os modelos criados com informações contextuais coletadas em cada versão do software apresentaram maior precisão que modelos construídos a partir de um conjunto arbitrário de tarefas. As informações contextuais mais relevantes foram: o número de linhas adicionadas ou modificadas, número de linhas removidas, code churn, que representa a soma das linhas adicionadas, modificadas e removidas durante um commit, número de palavras na descrição da tarefa, número de comentários e papel dos desenvolvedores na discussão, medido pelo valor do índice de intermediação (betweenness) da rede social de comunicação. Os desenvolvedores dos projetos foram consultados para avaliar a importância dos modelos de predição baseados em informações contextuais. Segundo esses desenvolvedores, os resultados obtidos ajudam desenvolvedores novatos no projeto, pois não têm conhecimento da arquitetura e normalmente não estão familiarizados com as mudanças dos artefatos durante a evolução do projeto. Modelos de predição baseados em informações contextuais a partir de mudanças de software são relativamente precisos e, consequentemente, podem ser usados para apoiar os desenvolvedores durante a realização de atividades de manutenção e evolução de software / Co-change prediction aims to make developers aware of which artifacts may change together with the artifact they are working on. In the past, researchers relied on structural analysis to build prediction models. More recently, hybrid approaches relying on historical information and textual analysis have been proposed. Despite the advances in the area, software developers still do not use these approaches widely, presumably because of the number of false recommendations. The hypothesis of this thesis is that contextual information of software changes collected from issues, developers\' communication, and commit metadata describe the circumstances and conditions under which a co-change occurs and this is useful to predict co-changes. The aim of this thesis is to use contextual information to build co-change prediction models improving the overall accuracy, especially decreasing the amount of false recommendations. We built predictive models specific for each pair of files using contextual information and the Random Forest machine learning algorithm. The approach was evaluated in 129 versions of 10 open source projects from the Apache Software Foundation. We compared our approach to a baseline model based on association rules, which is often used in the literature. We evaluated the performance of the prediction models, investigating the influence of data aggregation to build training and test sets, as well as the identification of the most relevant contextual information. The results indicate that models based on contextual information can correctly predict 88% of co-change instances, against 19% achieved by the association rules model. This indicates that models based on contextual information can be 3 times more accurate. Models created with contextual information collected in each software version were more accurate than models built from an arbitrary amount of contextual information collected from more than one version. The most important pieces of contextual information to build the prediction models were: number of lines of code added or modified, number of lines of code removed, code churn, number of words in the discussion and description of a task, number of comments, and role of developers in the discussion (measured by the closeness value obtained from the communication social network). We asked project developers about the relevance of the results obtained by the prediction models based on contextual information. According to them, the results can help new developers to the project, since these developers have no knowledge about the architecture and are usually not familiar with the artifacts history. Thus, our results indicate that prediction models based on the contextual information are useful to support developers during the maintenance and evolution activities
|
3 |
Predição de mudanças conjuntas de artefatos de software com base em informações contextuais / Predicting co-changes of software artifacts based on contextual informationIgor Scaliante Wiese 18 March 2016 (has links)
O uso de abordagens de predição de mudanças conjuntas auxilia os desenvolvedores a encontrar artefatos que mudam conjuntamente em uma tarefa. No passado, pesquisadores utilizaram análise estrutural para construir modelos de predição. Mais recentemente, têm sido propostas abordagens que utilizam informações históricas e análise textual do código fonte. Apesar dos avanços obtidos, os desenvolvedores de software ainda não usam essas abordagens amplamente, presumidamente por conta do número de falsos positivos. A hipótese desta tese é que informações contextuais obtidas das tarefas, da comunicação dos desenvolvedores e das mudanças dos artefatos descrevem as circunstâncias e condições em que as mudanças conjuntas ocorrem e podem ser utilizadas para realizar a predição de mudanças conjuntas. O objetivo desta tese consiste em avaliar se o uso de informações contextuais melhora a predição de mudanças conjuntas entre dois arquivos em relação às regras de associação, que é uma estratégia frequentemente usada na literatura. Foram construídos modelos de predição específicos para cada par de arquivos, utilizando as informações contextuais em conjunto com o algoritmo de aprendizagem de máquina random forest. Os modelos de predição foram avaliados em 129 versões de 10 projetos de código aberto da Apache Software Foundation. Os resultados obtidos foram comparados com um modelo baseado em regras de associação. Além de avaliar o desempenho dos modelos de predição também foram investigadas a influência do modo de agrupamento dos dados para construção dos conjuntos de treinamento e teste e a relevância das informações contextuais. Os resultados indicam que os modelos baseados em informações contextuais predizem 88% das mudanças corretamente, contra 19% do modelo de regras de associação, indicando uma precisão 3 vezes maior. Os modelos criados com informações contextuais coletadas em cada versão do software apresentaram maior precisão que modelos construídos a partir de um conjunto arbitrário de tarefas. As informações contextuais mais relevantes foram: o número de linhas adicionadas ou modificadas, número de linhas removidas, code churn, que representa a soma das linhas adicionadas, modificadas e removidas durante um commit, número de palavras na descrição da tarefa, número de comentários e papel dos desenvolvedores na discussão, medido pelo valor do índice de intermediação (betweenness) da rede social de comunicação. Os desenvolvedores dos projetos foram consultados para avaliar a importância dos modelos de predição baseados em informações contextuais. Segundo esses desenvolvedores, os resultados obtidos ajudam desenvolvedores novatos no projeto, pois não têm conhecimento da arquitetura e normalmente não estão familiarizados com as mudanças dos artefatos durante a evolução do projeto. Modelos de predição baseados em informações contextuais a partir de mudanças de software são relativamente precisos e, consequentemente, podem ser usados para apoiar os desenvolvedores durante a realização de atividades de manutenção e evolução de software / Co-change prediction aims to make developers aware of which artifacts may change together with the artifact they are working on. In the past, researchers relied on structural analysis to build prediction models. More recently, hybrid approaches relying on historical information and textual analysis have been proposed. Despite the advances in the area, software developers still do not use these approaches widely, presumably because of the number of false recommendations. The hypothesis of this thesis is that contextual information of software changes collected from issues, developers\' communication, and commit metadata describe the circumstances and conditions under which a co-change occurs and this is useful to predict co-changes. The aim of this thesis is to use contextual information to build co-change prediction models improving the overall accuracy, especially decreasing the amount of false recommendations. We built predictive models specific for each pair of files using contextual information and the Random Forest machine learning algorithm. The approach was evaluated in 129 versions of 10 open source projects from the Apache Software Foundation. We compared our approach to a baseline model based on association rules, which is often used in the literature. We evaluated the performance of the prediction models, investigating the influence of data aggregation to build training and test sets, as well as the identification of the most relevant contextual information. The results indicate that models based on contextual information can correctly predict 88% of co-change instances, against 19% achieved by the association rules model. This indicates that models based on contextual information can be 3 times more accurate. Models created with contextual information collected in each software version were more accurate than models built from an arbitrary amount of contextual information collected from more than one version. The most important pieces of contextual information to build the prediction models were: number of lines of code added or modified, number of lines of code removed, code churn, number of words in the discussion and description of a task, number of comments, and role of developers in the discussion (measured by the closeness value obtained from the communication social network). We asked project developers about the relevance of the results obtained by the prediction models based on contextual information. According to them, the results can help new developers to the project, since these developers have no knowledge about the architecture and are usually not familiar with the artifacts history. Thus, our results indicate that prediction models based on the contextual information are useful to support developers during the maintenance and evolution activities
|
Page generated in 0.129 seconds