• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microscope X dans la fenêtre de l’eau : conception, miroirs à revêtements multicouches et métrologie associée / X-ray microscope in the water-window : design, multilayer mirrors and associated metrology

Burcklen, Catherine 03 February 2017 (has links)
L’observation d’échantillons biologiques à une échelle nanométrique est actuellement un thème majeur pour la biologie. En particulier, la microscopie à rayons X dans la fenêtre de l’eau (entre les seuils d’absorption K-alpha de l’oxygène et du carbone, soit entre 2,4 et 4,4 nm de longueur d’onde) présente un intérêt remarquable car elle permet à la fois l’observation d’échantillons biologiques avec un fort contraste d’absorption naturel, mais également une haute résolution grâce à la courte longueur d’onde d’utilisation. Plusieurs microscopes basés sur des composants diffractifs ont d’ores et déjà été développés et ont montré une résolution allant jusqu’à 12 nm. Dans ce contexte, nous développons au Laboratoire Charles Fabry un microscope X plein champ à miroirs en incidence proche de la normale. Le schéma optique du microscope a dans un premier temps été étudié et optimisé. Il est basé sur un objectif de Schwarzschild, et dispose donc d’une longue distance de travail ce qui permettra de faciliter l’installation de l’échantillon à observer. Les miroirs doivent être traités avec un revêtement multicouche à très faible période à base de chrome et de scandium. Plusieurs systèmes multicouches à couches sub nanométrique ont été étudiés pour maximiser la réflectivité des revêtements à une longueur d’onde proche de 3,14 nm, parmi lesquels : Cr/Sc, Cr/B4C/Sc, CrN/Sc et CrN/B4C/Sc. Une réflectivité pic de plus de 23% a été mesurée pour un revêtement multicouche CrN/B4C/Sc à un angle d’incidence inférieur à 5°. / The observation of biological samples at a nanometer scale is currently a major topic for biology. In particular, X-ray microscopy in the water-window (between Oxygen and Carbon K-alpha edges, corresponding to a wavelength between 2.4 and 4.4 nm) is off remarkable interest since it enables the visualization of biological samples with a natural high absorption contrast and a high resolution thanks to the short working wavelength. Several such x-ray microscopes have already been developed and showed resolutions down to 12 nm. In this context, we develop at Laboratoire Charles Fabry a full field, near normal incidence mirror based X-ray microscope. The optical design of the microscope was studied and optimized in a first place. It is based on a Schwarzschild objective, with a rather long working distance so that the installation of the sample will be facilitated. The mirrors are to be coated with very short period multilayer coatings containing chromium and scandium. Several multilayer systems with sub-nanometer thick layers ere studied in order to obtain the highest reflectance possible near normal incidence at a wavelength near 3.14 nm. Those systems were Cr/Sc, Cr/B4C/Sc, CrN/Sc and CrN/B4C/Sc. A peak reflectance of 23% has been measured for CrN/B4C/Sc at an incidence angle lower than 5°.
2

Optiques pour les impulsions attosecondes

Bourassin-Bouchet, Charles 05 December 2011 (has links) (PDF)
Les plus brefs flashs de lumière qui puissent être produits en laboratoire actuellement ont des durées de quelques dizaines d'attosecondes (1 as = 10-18 s), et ne peuvent être créés que dans le domaine extrême-ultraviolet (XUV). Le développement de composants optiques capables de contrôler et de mettre en forme ce rayonnement attoseconde est crucial pour permettre à ces impulsions de se généraliser. Cette thèse porte donc sur l'étude et la réalisation de tels composants.Les impulsions attosecondes ont la particularité de comporter une dérivée de fréquence intrinsèque au processus utilisé pour leur génération. Cela a pour effet d'augmenter leur durée. Nous avons donc développé des miroirs multicouches capables d'induire une dérive de fréquence opposée sur les impulsions s'y réfléchissant, permettant ainsi de les compresser. En caractérisant les impulsions attosecondes réfléchies par ces miroirs, nous avons pour la première fois observé une telle compression des impulsions attosecondes. Nous avons également développé des miroirs multicouches théoriquement capables de compresser des impulsions sous la barre symbolique des 50 as, soit en dessous du record actuel de durée d'une impulsion lumineuse.La mesure de ces impulsions requiert leur focalisation dans un spectromètre. Or les miroirs focalisants généralement utilisés peuvent très rapidement introduire des aberrations géométriques. A l'aide de simulations numériques et d'une étude analytique, nous avons montré que ces aberrations pouvaient très fortement déformer la structure spatio-temporelle des impulsions attosecondes, provoquant une augmentation de leur durée. Enfin, nous avons montré que ces effets n'étaient pas pris en compte par les techniques actuelles de caractérisation d'impulsions attosecondes, cela pouvant amener à mesurer une impulsion attoseconde plus courte qu'elle ne l'est en réalité.
3

Optiques pour les impulsions attosecondes / Optical components for attosecond pulses

Bourassin-Bouchet, Charles 05 December 2011 (has links)
Les plus brefs flashs de lumière qui puissent être produits en laboratoire actuellement ont des durées de quelques dizaines d’attosecondes (1 as = 10-18 s), et ne peuvent être créés que dans le domaine extrême-ultraviolet (XUV). Le développement de composants optiques capables de contrôler et de mettre en forme ce rayonnement attoseconde est crucial pour permettre à ces impulsions de se généraliser. Cette thèse porte donc sur l’étude et la réalisation de tels composants.Les impulsions attosecondes ont la particularité de comporter une dérivée de fréquence intrinsèque au processus utilisé pour leur génération. Cela a pour effet d’augmenter leur durée. Nous avons donc développé des miroirs multicouches capables d’induire une dérive de fréquence opposée sur les impulsions s’y réfléchissant, permettant ainsi de les compresser. En caractérisant les impulsions attosecondes réfléchies par ces miroirs, nous avons pour la première fois observé une telle compression des impulsions attosecondes. Nous avons également développé des miroirs multicouches théoriquement capables de compresser des impulsions sous la barre symbolique des 50 as, soit en dessous du record actuel de durée d’une impulsion lumineuse.La mesure de ces impulsions requiert leur focalisation dans un spectromètre. Or les miroirs focalisants généralement utilisés peuvent très rapidement introduire des aberrations géométriques. A l’aide de simulations numériques et d’une étude analytique, nous avons montré que ces aberrations pouvaient très fortement déformer la structure spatio-temporelle des impulsions attosecondes, provoquant une augmentation de leur durée. Enfin, nous avons montré que ces effets n’étaient pas pris en compte par les techniques actuelles de caractérisation d’impulsions attosecondes, cela pouvant amener à mesurer une impulsion attoseconde plus courte qu’elle ne l’est en réalité. / The shortest flashes of light ever produced so far have durations of a few tens of attoseconds (1 as = 10-18 s), and can only be generated in the extreme ultraviolet spectral range (XUV). Developing optical components able to control and shape such attosecond radiation is crucial to generalize the use of these light pulses. This is the topic of this work.Attosecond pulses happen to be chirped due to the physical process used to generate them. This phenomenon leads to an increase in their duration. Consequently, we developed inversely chirped multilayer mirrors, allowing one to compress the pulses during their reflection off the mirrors. By measuring these reflected pulses, we observed for the first time such a compression of attosecond pulses. Moreover, we developed another set of multilayer mirrors theoretically able to compress pulses below 50 as. That is below the current pulse duration record.Furthermore, the measurement of these pulses requires that they be focussed into a spectrometer. However, typically used focusing mirrors can add geometric aberrations. By the use of numerical simulations and thanks to an analytic study, we showed that these aberrations could strongly distort the spatio-temporal structure of the pulses, and increase their duration. Moreover, we showed that this phenomenon was not taken into account by current attosecond pulse characterization techniques. This could lead to determining the pulse duration to be shorter than it actually is.

Page generated in 0.0485 seconds