• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of the flow around slender bodies at high incidence

Kennaugh, Andrew January 1988 (has links)
No description available.
2

Study of forces and moments on wing-bodies at high incidence

Johnson, G. A. January 1987 (has links)
No description available.
3

Ram-jet combustion based on shock/flame interaction

Edwards, J. A. January 1983 (has links)
An experimental investigation into the effects of shock/wake and shock/flame interaction on the base pressure of axisymmetric bodies at Mach 2 has been carried out. This investigation has determined the effects of various forms of shock generator (axisymmetric cowls, twodimensional wedges and 'delta' wings) on the base pressure. Shock waves generated by over-expanding the airflow in an open-jet wind tunnel have been used to determine the effect of shock strength on the base pressure of an axisymmetric fuel injector. Both peripheral bleed and axial bleed of hydrogen fuel have been examined and the effect of shock compression on the resulting flame has been determined. In the axial bleed case nitrogen and hydrogen bleed without combustion has also been examined. The effect of varying the airflow stagnation temperature has also beeninvestigated. It is demonstrated herein that there is a distinct shock/wake interaction position that maximises the base pressure, that with interaction at this optimal position the static pressure rise across the shock wave can be communicated in full to the base of the centrebody, and that favourable aerodynamic interference between the wake and a cowl of 50 convergent-divergent internal section can give rise to a net drag reduction. The shock/wake and shock/flame experiments demonstrate that a significant base thrust can be generated, however, the fuel efficiency decreases with increasing shock strength. It is shown that the fuel specific impulse is a function of shock strength, interaction position and bleed mode (peripheral or axial). The onset of boundary layer separation due to the adverse pressure gradient encountered when the base pressure is high appears to limit the useful addition of wake combustion. Finally, it is demonstrated that the base pressure, with and without combustion, is only a weak function of airflow stagnation temperature.
4

Dynamic Modeling, Guidance, And Control Of Homing Missiles

Ozkan, Bulent 01 September 2005 (has links) (PDF)
DYNAMIC MODELING, GUIDANCE, AND CONTROL OF HOMING MISSILES &Ouml / ZKAN, B&uuml / lent Ph. D., Department of Mechanical Engineering Supervisor: Prof. Dr. M. Kemal &Ouml / ZG&Ouml / REN Co-Supervisor: Dr. G&ouml / kmen MAHMUTYAZICIOgLU September 2005, 236 pages In this study, the dynamic modeling, guidance, and control of a missile with two relatively rotating parts are dealt with. The two parts of the missile are connected to each other by means of a roller bearing. In the first part of the study, the governing differential equations of motion of the mentioned missile are derived. Then, regarding the relative rotation between the bodies, the aerodynamic model of the missile is constructed by means of the Missile Datcom software available in T&Uuml / BiTAK-SAGE. After obtaining the required aerodynamic stability derivatives using the generated aerodynamic data, the necessary transfer functions are determined based on the equations of motion of the missile. Next, the guidance laws that are considered in this study are formulated. Here, the Linear Homing Guidance and the Parabolic Homing Guidance laws are introduced as alternatives to the Proportional Navigation Guidance law. On this occasion, the spatial derivation of the Proportional Navigation Guidance law is also done. Afterwards, the roll, pitch and yaw autopilots are designed using the determined transfer functions. As the roll autopilot is constructed to regulate the roll angle of the front body of the missile which is the controlled part, the pitch and yaw autopilots are designed to realize the command signals generated by the guidance laws. The guidance commands are in the form of either the lateral acceleration components or the flight path angles of the missile. Then, the target kinematics is modeled for a typical surface target. As a complementary part of the work, the design of a target state estimator is made as a first order fading memory filter. Finally, the entire guidance and control system is built by integrating all the models mentioned above. Using the entire system model, the computer simulations are carried out using the Matlab-Simulink software and the proposed guidance laws are compared with the Proportional Navigation Guidance law. The comparison is repeated for a selected single-body missile as well. Consequently, the simulation results are discussed and the study is evaluated.

Page generated in 0.057 seconds