Spelling suggestions: "subject:"missing observations (estatistics)"" "subject:"missing observations (cstatistics)""
11 |
The performance of missing data treatments for longitudinal data with a time-varying covariateAdachi, Eishi, Pituch, Keenan A., January 2005 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2005. / Supervisor: Keenan A. Pituch. Vita. Includes bibliographical references.
|
12 |
The effect of missing data in the analysis of a bariatric surgery program /Berry, Katharine F. January 2007 (has links) (PDF)
Undergraduate honors paper--Mount Holyoke College, 2007. Dept. of Mathematics and Statistics. / Includes bibliographical references (leaves 81-82).
|
13 |
Estimation of multivariate polychoric correlation coefficients with missing data.January 1988 (has links)
by Chiu Yiu Ming. / Thesis (M.Ph.)--Chinese University of Hong Kong, 1988. / Bibliography: leaves 127-129.
|
14 |
Analysis of structural equation models of polytomous variables with missing observations.January 1991 (has links)
by Man-lai Tang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1991. / Includes bibliographical references. / Chapter PART I : --- ANALYSIS OF DATA WITH POLYTOMOUS VARIABLES --- p.1 / Chapter Chapter 1 --- Introduction --- p.1 / Chapter Chapter 2 --- Estimation of the Model with Incomplete Data --- p.5 / Chapter §2.1 --- The Model --- p.5 / Chapter §2.2 --- Two-stage Estimation Method --- p.7 / Chapter Chapter 3 --- Generalization to Several Populations --- p.16 / Chapter §3.1 --- The Model --- p.16 / Chapter §3.2 --- Two-stage Estimation Method --- p.18 / Chapter Chapter 4 --- Computation of the Estimates --- p.23 / Chapter §4.1 --- Maximum Likelihood Estimates in Stage I --- p.23 / Chapter §4.2 --- Generalized Least Squares Estimates in Stage II --- p.27 / Chapter §4.3 --- Approximation for the weight matrix W --- p.28 / Chapter Chapter 5 --- Some Illustrative Examples --- p.31 / Chapter §5.1 --- Single Population --- p.31 / Chapter §5.2 --- Multisample --- p.37 / Chapter PART II : --- ANALYSIS OF CONTINUOUS AND POLYTOMOUS VARIABLES --- p.42 / Chapter Chapter 6 --- Introduction --- p.42 / Chapter Chapter 7 --- Several Populations Structural Equation Models with Continuous and Polytomous Variables --- p.44 / Chapter §7.1 --- The Model --- p.44 / Chapter §7.2 --- Analysis of the Model --- p.45 / Chapter Chapter 8 --- Analysis of Structural Equation Models of Polytomous and Continuous Variables with Incomplete Data by Multisample Technique --- p.54 / Chapter §8.1 --- Motivation --- p.54 / Chapter §8.2 --- The Model --- p.55 / Chapter §8.3 --- The Method --- p.56 / Chapter Chapter 9 --- Computation of the Estimates --- p.60 / Chapter §9.1 --- Optimization Procedure --- p.60 / Chapter §9.2 --- Derivatives --- p.61 / Chapter Chapter 10 --- Some Illustrative Examples --- p.65 / Chapter §10.1 --- Multisample Example --- p.65 / Chapter §10.2 --- Incomplete Data Example --- p.67 / Chapter §10.3 --- The LISREL Program --- p.69 / Chapter Chapter 11 --- Conclusion --- p.71 / Tables --- p.73 / Appendix --- p.85 / References --- p.89
|
15 |
Estimation of multivariate polyserial and polychoric correlations with incomplete data.January 1990 (has links)
by Kwan-Moon Leung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1990. / Bibliography: leaves 77-79. / Chapter Chapter 1 --- Introduction --- p.1 / Chapter Chapter 2 --- Estimation of the Model with Some Polytomous Entries Missed --- p.5 / Chapter §2.1 --- The Model --- p.5 / Chapter §2.2 --- Full Maximum Likelihood (FML) Estimation --- p.7 / Chapter Chapter 3 --- Estimation of the Model with Some Continuous and Polytomous Entries Missed --- p.13 / Chapter §3.1 --- The Model --- p.13 / Chapter §3.2 --- Pseudo Maximum Likelihood (PsML) Estimation --- p.15 / Chapter Chapter 4 --- Indirect Methods --- p.19 / Chapter §4.1 --- Listwise Deletion Method --- p.19 / Chapter §4.2 --- Mean Imputation Method --- p.19 / Chapter §4.3 --- Regression Imputation Method --- p.20 / Chapter Chapter 5 --- Computation of the Estimates --- p.23 / Chapter §5.1 --- Optimization Procedure --- p.23 / Chapter §5.2 --- Starting Value and Gradient Vector of the Model with Some Polytomous Entries Missed --- p.25 / Chapter §5.3 --- Starting Value and Gradient Vector of the Model with Some Continuous and Polytomous Entries Missed --- p.29 / Chapter Chapter 6 --- Partition Maximum Likelihood (PML) Estimation --- p.35 / Chapter §6.1 --- Motivation --- p.35 / Chapter §6.2 --- PML Procedure of the Model with Some Polytomous Entries Missed --- p.35 / Chapter §6.3 --- PML Procedure of the Model with Some Continuous and Polytomous Entries Missed --- p.37 / Chapter Chapter 7 --- Simulation Studies and Comparison --- p.39 / Chapter §7.1 --- Simulation Study I --- p.39 / Chapter §7.2 --- Simulation Study II --- p.44 / Chapter Chapter 8 --- Summary and Discussion --- p.43 / Tables / Appendix / References
|
16 |
Extensions of the proportional hazards loglikelihood for censored survival dataDerryberry, DeWayne R. 22 September 1998 (has links)
The semi-parametric approach to the analysis of proportional hazards survival data
is relatively new, having been initiated in 1972 by Sir David Cox, who restricted its use
to hypothesis tests and confidence intervals for fixed effects in a regression setting.
Practitioners have begun to diversify applications of this model, constructing
residuals, modeling the baseline hazard, estimating median failure time, and analyzing
experiments with random effects and repeated measures. The main purpose of this
thesis is to show that working with an incompletely specified loglikelihood is more
fruitful than working with Cox's original partial loglikelihood, in these applications.
In Chapter 2, we show that the deviance residuals arising naturally from the partial
loglikelihood have difficulties detecting outliers. We demonstrate that a smoothed, nonparametric
baseline hazard partially solves this problem. In Chapter 3, we derive new
deviance residuals that are useful for identifying the shape of the baseline hazard. When
these new residuals are plotted in temporal order, patterns in the residuals mirror
patterns in the baseline hazard. In Chapter 4, we demonstrate how to analyze survival
data having a split-plot design structure. Using a BLUP estimation algorithm, we
produce hypothesis tests for fixed effects, and estimation procedures for the fixed
effects and random effects. / Graduation date: 1999
|
17 |
Meta-analytic methods of pooling correlation matrices for structural equation modeling under different patterns of missing dataFurlow, Carolyn Florence. January 2003 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2003. / Vita. Includes bibliographical references. Available also from UMI Company.
|
18 |
Missing SNP Genotype ImputationWang, Yining Unknown Date
No description available.
|
19 |
Unconditional estimating equation approaches for missing data /Lu, Lin. January 1900 (has links)
Thesis (Ph. D.)--Oregon State University, 2008. / Printout. Includes bibliographical references (leaves 64-66). Also available on the World Wide Web.
|
20 |
A study on some missing value estimation algorithms for DNA microarray dataTai, Ching-wan. January 2006 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2007. / Title proper from title frame. Also available in printed format.
|
Page generated in 0.1713 seconds