• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Benzo[e]pryridoindolones, nouveaux inhibiteurs de kinases hydrosolubles à fort potentiel anti-prolifératif / Benzo[e]pryridoindolones,new hydrosoluble kinase inhibitors with high anti-proliferative activity

Le, Ly Thuy Tram 18 September 2013 (has links)
Nous étudions une nouvelles familles d'inhibiteurs de kinase: les benzopyridoindole. Ces molécules ont des effets antiprolifératifs sur des lignées cancéreuses et représentent les têtes de série de possibles agents anti-cancéreux. We study on a new family of kinase inhibitors: benzopyridoindole. These molecules have antiproliferative effects on cancer cell lines and represent the lead of potential anti-cancer products. / Benzo[e]pyridoindoles are novel potent inhibitors of aurora kinases. We performed a SAR study to improve their activity and water solubility. Amino-benzo[e]pyridoindolones were found to be potent hydrosoluble anti-proliferative molecules. They induced a massive arrest in mitosis, prevented histone H3 phosphorylation as well as disorganizing the mitotic spindles. Upon a delay, cells underwent binucleated and finally died. Taking into account their interesting preclinal characteristics, their efficiency towards xenografts in nude mice and their apparent safety in animals, these molecules are promising new anti-cancer drugs. They probably target a metabolic signaling pathway, besides aurora B inhibition. In addition to their possible applications, these inhibitors are tools for cell biology studies. C4, a low ATP affinity inhibitor of aurora B kinase, revealed that the basal activity of the kinase is required for histone H3 phosphorylation in prophase and for chromosome compaction in anaphase. These waves of activation/deactivation of the kinase, during mitosis, corresponded to different conformations of the passenger chromosomal complex.
2

The function and regulation of myosin-interacting guanine nucleotide exchange factor (MYOGEF) and centrosome/spindle pole associated protein (CSPP) during mitotic progression and cytokinesis

Asiedu, Michael Kwabena January 1900 (has links)
Doctor of Philosophy / Biochemistry Interdepartmental Program / Qize Wei / This dissertation describes the role of myosin-interacting guanine nucleotide exchange factor (MyoGEF) and centrosome/spindle pole associated protein (CSPP) in mitotic progression and cytokinesis. We have identified three mouse isoforms of CSPP, all of which interact and colocalize with MyoGEF to the central spindle in anaphase cells. The N-terminus of MyoGEF interacts with myosin whereas the C terminus interacts with the N-terminus of CSPP, forming a complex. The N-terminus of CSPP appears to be important for both localization and interaction with MyoGEF. CSPP plays a role in mitotic progression since its depletion by RNAi resulted in metaphase arrest. MyoGEF is required for completion of cytokinesis. Both MyoGEF and CSPP are phosphorylated by mitotic kinases including Plk1 and Aurora. Importantly, MyoGEF is phosphorylated at Thr-574 in mitosis by Polo-like kinase 1, and this phosphorylation is required for activation of RhoA. Thr-543 of MyoGEF is required for Plk1 binding in mitosis and phosphorylation of MyoGEF by Cdk1/cyclinB, possibly at Thr-543 may generate a Plk1 docking site, i.e., Cdk1 can phosphorylate MyoGEF at Thr-543, thereby allowing Plk1 to bind and phosphorylate MyoGEF at Thr-574. Finally, MyoGEF and CSPP are also phosphorylated by Aurora-B kinase in vitro. Taken together, we propose that Aurora-B may phosphorylate and recruit MyoGEF and CSPP to the central spindle, where phosphorylation of MyoGEF at Thr-543 promotes Polo kinase binding and additional phosphorylation of MyoGEF, leading to the activation of RhoA at the cleavage furrow.

Page generated in 0.041 seconds