• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Návrh mixéru pro výrobu fosfátových hnojiv / Design of phosphate fertilizer mixer

Adamčík, Martin January 2012 (has links)
Diplomová práca sa zaoberá návrhom mixéru pre výrobu fosfátových hnojív s ohľadom na zadané požiadavky. Práca samotná je rozdelená do niekoľkých častí, kde prvá formuluje ciele riešenia. Základné otázky konkrétneho priemyslu sú odpovedané s akcentom na premenné, ktoré priamo ovplyvňujú kvalitu mixovania. Ďalšia časť práce prezentuje ideový návrh so sadou výpočtov, ktoré podporujú požadovaný výkon a mechanický dizajn mixéru. Hriadeľ je kontrolovaný analytickým výpočtom a metódou FEM, vyúsťujúc do zhodných záverov. Navrhnutý dizajn mixéru je prezentovaný 3D modelmi jeho súčastí, ktoré boli vytvorené v prostredí Autodesk Inventor. Práca obsahuje taktiež 2D dokumentáciu.
2

Design Of A Mixer For Uniform Heating Of Particulate Solids In Microwave Ovens

Cevik, Mete 01 March 2011 (has links) (PDF)
The aim of this study is to design a mixer with appropriate parts for uniform treatment of the material in household microwave ovens which can not be achieved with the turntable. The designed mixer&rsquo / s performance was tested by the help of color and surface temperature values. In the design of the mixer primarily mixing in the vertical and radial directions were sought and for this purpose blades and wings for directing the material especially in these directions were present. The rotational motion of the mixer was provided by a shaft actuated by the motor of the turntable where the motor was replaced by a speed adjustable one. Couscous macaroni beads wetted with CoCl2 solution were dried for processing in the microwave oven. The initial color values of the samples were L*= 52.0&plusmn / 0.35, a*= 8.8&plusmn / 0.21 and b*= 14.1&plusmn / 0.11 . The studied parameters were microwave power level (10%, 40%, 67% and 100% ), processing time (60,90, 120 sec), speed of rotation of the mixer (5,10,15 rpm) , location (4up, 4bt, 6up, 6bt) for the cases of with and without the mixer. v The macaroni beads were well arranged in a mixing container and then put into the microwave oven for operation. Same parameters with coloring experiments were used for the surface temperature determination. After operation the container was photographed by an IR camera. Whether the designed mixer was present or not, average a* and b* values decreased while temperature increased . All these values were significantly affected by the time and power increase. The L* value became an insignificant parameter to decide for the performance Location of the particles in the container appeared as a significant parameter affecting the a*, b* and temperature values without the mixer whereas, with the use of the mixer it became an insignificant parameter indicating uniform energy distribution. Speed of rotation of the mixer was a significant parameter for both cases. However, the color values obtained did not show the same trend with mixer which it showed without mixer. It is concluded that the designed mixer is effective in providing homogeneity of the product by providing sufficient mixing in the container hence the particles can receive about equal energy. Keywords: Microwave oven, particulate solids, mixing, mixer design, testing performance, uniform treatment
3

INVESTIGATION OF ROTATING DETONATION PHYSICS AND DESIGN OF A MIXER FOR A ROTATING DETONATION ENGINE

John Andrew Grunenwald (17582688) 09 December 2023 (has links)
<p dir="ltr">A fast model of a Rotating Detonation Combustor (RDC) is developed based on the Method of Characteristics (MOC). The model provides a CFD-like solution of an unwrapped 2D RDC flow field in under 10 seconds with similar fidelity as 2D Reacting URANS simulations. Parametric studies are conducted using the simplified model, and the trends are analyzed to gain insight into the underlying physics of rotating detonation combustors. A methodology to assess the performance of operation with multiple waves is presented. The main effect of increasing waves is found to be the increase in the exit Mach number of the combustion chamber. The design process of a mixer component is also presented. The mixer lies downstream of a channel-cooled RDC with subsonic exit and upstream of a Rolls-Royce M250 helicopter engine in open-loop configuration. The mixer dilutes the RDC exhaust with approximately 250% air to condition the flow for the M250 turbine at steady state operation, while also acting as an isolator with a choked throat to prevent back propagation of pressure waves. The mixer aerodynamic design was completed using 2D axisymmetric RANS simulations, and the mechanical design was evaluated using Ansys Mechanical FEA and was found to be able to survive the high thermal stresses present both during the transient heating and steady state operating condition.</p>

Page generated in 0.0292 seconds