• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence of Fuel Inhomogeneity and Stratification Length Scales on Detonation Wave Propagation in a Rotating Detonation Combustor (RDC)

Raj, Piyush 03 May 2021 (has links)
The detonation-based engine has the key advantage of increased thermodynamic efficiency over the traditional constant pressure combustor. These detonation-based engines are also known as Pressure Gain Combustion systems (PGC) and Rotating Detonation Combustor (RDC) is a form of PGC, in which the detonation wave propagates azimuthally around an annular combustor. Prior researchers have performed a high fidelity 3-D numerical simulation of a rotating detonation combustor (RDC) to understand the flow physics such as detonation wave velocity, pressure profile, wave structure; however, performing these 3-D simulations is computationally expensive. 2-D simulations are a potential alternative to reduce computational cost. In most RDCs, fuel and oxidizer are injected discretely from separate plenums, and this discrete fuel/air injection results in inhomogeneous mixing within the domain. Due to the discrete fuel injection locations, fuel/oxidizer will stratify to form localized pockets of rich and lean mixtures. The motivation of the present study is to investigate the impact of unmixedness and stratification length scales on the performance of an RDC using a 2-D numerical approach. Unmixedness, which is defined as the standard deviation of equivalence ratio normalized by the mean global equivalence ratio, is a measure of the degree of fuel-oxidizer inhomogeneity. To model the effect of unmixedness in a 2-D domain, a lognormal distribution of the fuel mass fraction is generated with a mean equivalence ratio of 1 and varying standard deviations at the inlet boundary as a numerical source term. Moreover, to model the effects of stratification length scales, fuel mass fraction at the inlet boundary cells is bundled for a given length scale, and the mass fractions for these bundles are updated based on the lognormal distribution after every three-time steps. Using this methodology, 2-D numerical analyses are carried out to investigate the performance of an RDC for an H2-air mixture with varying unmixedness and stratification length scales. Results show that mean detonation velocity decreases and wave speed variation increases with an increase in unmixedness. However, with an increase in stratification length scale mean velocity remain relatively unchanged but variation in local velocity increases. The detonation wave front corrugation also increases with an increase in mixture inhomogeneity. The mean detonation cell size increases with an increase in unmixedness. The cell shape becomes more distorted and irregular with an increase in stratification length scale and unmixedness. The combined effect of unmixedness and stratification length scale leads to a decrease in pressure gain. Overall, this concept is able to elucidate the effects of varying unmixedness and stratification length scales on the performance of an RDC. / Master of Science / Pressure Gain Combustion (PGC) system has gained significant focus in recent years due to its increased thermodynamic efficiency over a constant pressure Brayton Cycle. Rotating Detonation Combustor (RDC) is a type of PGC system, which is thermodynamically more efficient than the conventional gas turbine combustor. One of the main aspects of the detonation process is the rapid burning of the fuel-oxidizer mixture, which occurs so fast that there is not enough time for pressure to equilibrate. Therefore, the process is thermodynamically closer to a constant volume process rather than a constant pressure process. A constant volume cycle is thermodynamically more efficient than a constant pressure Brayton cycle. In an RDC, a mixture of fuel and air is injected axially, and a detonation wave propagates continuously through the circumferential section. Numerical simulation of an RDC provides additional flexibility over experiments in understanding the flow physics, detonation wave structure, and analyzing the physical and chemical processes involved in the detonation cycle. Prior researchers have utilized a full-scale 3-D numerical simulation for understanding the performance of an RDC. However, the major challenge with 3-D analyses is the computational expense. Thus, to overcome this, an inexpensive 2-D simulation is used to model the flow physics of an RDC. In most RDCs, the fuel and oxidizer are injected discretely from separate plenums. Due to the discrete fuel injection, the fuel/air mixture is never perfectly premixed and results in a stratified flow field. The objective of the current work is to develop a novel approach to independently investigate the effects of varying unmixedness and stratification length scales on RDC performance using a 2-D simulation.
2

Development and Testing of Pulsed and Rotating Detonation Combustors

St. George, Andrew 27 May 2016 (has links)
No description available.
3

Dynamics of Rotating Detonation Combustor Operation through Continuous Geometry Variation

Ethan Plaehn (17537760) 03 December 2023 (has links)
<p dir="ltr">Rotating detonation combustors are a developing technology with the potential to successfully integrate pressure gain combustion in to modern propulsion devices. Utilization of propagating detonation waves could increase combustion cycle efficiency and reduce combustor size, resulting in an overall increase in system range or payload-carrying capabilities. However, the sensitivity of rotating detonation combustor operation and performance to geometric features, such as injector configuration or chamber length, still needs to be characterized over a wide range of operating conditions. In addition, the hardware configuration that promotes easy ignition into a coherent detonation operating mode does not always maximize combustor performance, especially at low-loss conditions where feedback between chamber and manifold dynamics can exist. Therefore, a rotating detonation combustor with continuously variable geometry capabilities was designed in order to continuously vary any number of hardware design parameters during combustor testing. Not only does the variable geometry combustor enable rapid characterization of operability sensitivity with minimal hardware swaps, it also enables exploration of hysteresis in performance as the combustor is ignited in one configuration and transitioned to a different geometry while maintaining detonative operation.</p><p dir="ltr">The operability of the variable geometry rotating detonation combustor was first characterized with variable fuel injector location. Higher wave speeds were observed at injector locations closest to the oxidizer throat, with decreased wave speed and eventual transition to deflagrative operation occurring at locations farther downstream due to increasing momentum flux ratio. Variation in fuel injection location induced bifurcations in the number of waves, resulting in corresponding changes in wave speed and gross thrust. Hysteresis was observed in these quantities as the direction of injector translation was reversed. Active translation promoted detonative operation of the experiment at conditions and configurations that hitherto operated only in a deflagrative mode with fixed combustor geometry. </p><p dir="ltr">Sensitivity of rotating detonation combustor operation and performance to oxidizer injector pressure drop was characterized using continuous variation of the injector area during combustor operation. Propulsive performance of the combustor was evaluated using thrust and equivalent available pressure, relating them back to reactant supply pressures for assessment of combustor pressure gain. An effective reactant supply pressure was developed in order to combine contributions of both fuel and oxidizer manifold pressures to the total pressure of the system so that pressure gain could be accurately calculated. Pressure gain increased during a test as oxidizer injector area was increased and the corresponding manifold pressure was decreased. At larger injector areas, pressure gain decreased as the operating mode of the combustor transitioned from detonation to deflagration, concomitant with reduction of gross thrust. Modeling of injector recovery time revealed that the injector operated in both choked and unchoked regimes, which was used to explain detonation wave number transitions in the experiment. A broadened range of detonative operability enabled by active variation of combustor geometry resulted in higher performance with lower injector pressure drop.</p><p dir="ltr">Sensitivity of rotating detonation combustor operation and performance to combustor chamber length was characterized using continuous variation of the chamber length during combustor operation. Specific impulse of the combustor remained relatively constant as chamber length was decreased from its maximum values, proving the practicality of efficient packaging for rotating detonation combustors. A limiting chamber length at which combustion could not longer be supported within the chamber was found to exist for every operating condition, resulting in flame blow-out and performance degradation. Modeling of detonation fill height revealed that relatively low specific impulse measurements could be attributed to unburned reactants exiting the chamber, and a more efficient use of reactants was potentially the cause for improved performance at higher mass flow rates as detonation wave number increased and reactant residence time decreased.</p><p dir="ltr">This experiment and the associated analysis has helped further characterize rotating detonation combustor sensitivity to hardware design parameters. The continuously variable geometry capabilities enabled precise identification of geometric parameters that resulted in operating mode transitions. Analysis and modeling of the flow processes within the injector and chamber were used to help explain why these mode transitions occurred, and can be used for future rotating detonation combustor development.</p>
4

INVESTIGATION OF ROTATING DETONATION PHYSICS AND DESIGN OF A MIXER FOR A ROTATING DETONATION ENGINE

John Andrew Grunenwald (17582688) 09 December 2023 (has links)
<p dir="ltr">A fast model of a Rotating Detonation Combustor (RDC) is developed based on the Method of Characteristics (MOC). The model provides a CFD-like solution of an unwrapped 2D RDC flow field in under 10 seconds with similar fidelity as 2D Reacting URANS simulations. Parametric studies are conducted using the simplified model, and the trends are analyzed to gain insight into the underlying physics of rotating detonation combustors. A methodology to assess the performance of operation with multiple waves is presented. The main effect of increasing waves is found to be the increase in the exit Mach number of the combustion chamber. The design process of a mixer component is also presented. The mixer lies downstream of a channel-cooled RDC with subsonic exit and upstream of a Rolls-Royce M250 helicopter engine in open-loop configuration. The mixer dilutes the RDC exhaust with approximately 250% air to condition the flow for the M250 turbine at steady state operation, while also acting as an isolator with a choked throat to prevent back propagation of pressure waves. The mixer aerodynamic design was completed using 2D axisymmetric RANS simulations, and the mechanical design was evaluated using Ansys Mechanical FEA and was found to be able to survive the high thermal stresses present both during the transient heating and steady state operating condition.</p>
5

Applications and Modeling of Non-Thermal Plasmas

Zhu, Yonry R. January 2018 (has links)
No description available.

Page generated in 0.1648 seconds