Spelling suggestions: "subject:"mixture model"" "subject:"fixture model""
11 |
The wild bootstrap resampling in regression imputation algorithm with a Gaussian Mixture ModelMat Jasin, A., Neagu, Daniel, Csenki, Attila 08 July 2018 (has links)
Yes / Unsupervised learning of finite Gaussian mixture model (FGMM) is used to learn the distribution of population data. This paper proposes the use of the wild bootstrapping to create the variability of the imputed data in single miss-ing data imputation. We compare the performance and accuracy of the proposed method in single imputation and multiple imputation from the R-package Amelia II using RMSE, R-squared, MAE and MAPE. The proposed method shows better performance when compared with the multiple imputation (MI) which is indeed known as the golden method of missing data imputation techniques.
|
12 |
Approaches to Find the Functionally Related Experiments Based on Enrichment Scores: Infinite Mixture Model Based Cluster Analysis for Gene Expression DataLi, Qian 18 October 2013 (has links)
No description available.
|
13 |
Parameter estimation of queueing system using mixture model and the EM algorithmLi, Hang 02 December 2016 (has links)
Parameter estimation is a long-lasting topic in queueing systems and has attracted considerable attention from both academia and industry. In this thesis, we design a parameter estimation framework for a tandem queueing system that collects end-to-end measurement data and utilizes the finite mixture model for the maximum likelihood (ML) estimation. The likelihood equations produced by ML are then solved by the iterative expectation-maximization (EM) algorithm, a powerful algorithm for parameter estimation in scenarios involving complicated distributions.
We carry out a set of experiments with different parameter settings to test the performance of the proposed framework. Experimental results show that our method performs well for tandem queueing systems, in which the constituent nodes' service time follow distributions governed by exponential family. Under this framework, both the Newton-Raphson (NR) algorithm and the EM algorithm could be applied. The EM algorithm, however, is recommended due to its ease of implementation and lower computational overhead. / Graduate / hangli@uvic.ca
|
14 |
Security in Voice AuthenticationYang, Chenguang 27 March 2014 (has links)
We evaluate the security of human voice password databases from an information theoretical point of view. More specifically, we provide a theoretical estimation on the amount of entropy in human voice when processed using the conventional GMM-UBM technologies and the MFCCs as the acoustic features. The theoretical estimation gives rise to a methodology for analyzing the security level in a corpus of human voice. That is, given a database containing speech signals, we provide a method for estimating the relative entropy (Kullback-Leibler divergence) of the database thereby establishing the security level of the speaker verification system. To demonstrate this, we analyze the YOHO database, a corpus of voice samples collected from 138 speakers and show that the amount of entropy extracted is less than 14-bits. We also present a practical attack that succeeds in impersonating the voice of any speaker within the corpus with a 98% success probability with as little as 9 trials. The attack will still succeed with a rate of 62.50% if 4 attempts are permitted. Further, based on the same attack rationale, we mount an attack on the ALIZE speaker verification system. We show through experimentation that the attacker can impersonate any user in the database of 69 people with about 25% success rate with only 5 trials. The success rate can achieve more than 50% by increasing the allowed authentication attempts to 20. Finally, when the practical attack is cast in terms of an entropy metric, we find that the theoretical entropy estimate almost perfectly predicts the success rate of the practical attack, giving further credence to the theoretical model and the associated entropy estimation technique.
|
15 |
Predicting the life cycle of technologies from patent dataGebremariam, Merhawi Tewolde January 2019 (has links)
Analysis of patent documents is one way to learn about trends in the evolutionof technologies. In this thesis, we propose a mixture of life cycle Poisson modelfor predicting the life cycle of technologies from patent count data. The aim is topredict the life cycle of technologies and determine the stage of the technology inthe development S-curve. The model is constructed from historical data on patentpublications of technologies and also from experts’ belief of life cycle of technologies. The methods used to estimate the model are based on Bayesian methods, inparticular we use a combination of Gibbs sampling and slice sampling to simulatefrom the posterior distribution of the model parameters. We apply the model on adataset of 123 technologies from the electricity sector. As a preliminary exploratorystep clustering analysis is also applied on the dataset. Finally we evaluate the modelhow it performs to predict the trend of life cycle of technologies based on differentbase years. Results reveal that the model is capable of predicting the life cycleof technologies based on its different stages. However, the predictions of expectedbehavior become more accurate when more data is used to construct the prediction.
|
16 |
Implementation and evaluation of packet loss concealment schemes with the JM reference software / Implementation och utvärdering av metoder för att dölja paketförluster med JM-referensmjukvaranCooke, Henrik January 2010 (has links)
<p>Communication over today’s IP-based networks are to some extent subject to packet loss. Most real-time applications, such as video streaming, need methods to hide this effect, since resending lost packets may introduce unacceptable delays. For IP-based video streaming applications such a method is referred to as a <em>packet loss concealment </em>scheme.</p><p>In this thesis a recently proposed mixture model and least squares-based packet loss concealment scheme is implemented and evaluated together with three more well known concealment methods. The JM reference software is used as basis for the implementation, which is a public available software codec for the H.264 video coding standard. The evaluation is carried out by comparing the schemes in terms of objective measurements, subjective observations and a study with human observers.</p><p>The recently proposed packet loss concealment scheme shows good performance with respect to the objective measures, and careful observations indicate better concealment of scenes with fast motion and rapidly changing video content. The study with human observers verifies the results for the case when a more sophisticated packetization technique is used.</p><p>A new packet loss concealment scheme, based on joint modeling of motion vectors and pixels, is also investigated in the last chapter as an additional contribution of the thesis.</p>
|
17 |
Robust feature extractions from geometric data using geometric algebraMinh Tuan, Pham, Yoshikawa, Tomohiro, Furuhashi, Takeshi, Tachibana, Kaita 11 October 2009 (has links)
No description available.
|
18 |
Instrument Timbres and Pitch Estimation in Polyphonic MusicLoeffler, Dominik B. 14 April 2006 (has links)
In the past decade, the availability of digitally encoded, downloadable music has increased dramatically, pushed mainly by the release of the now famous MP3 compression format (Fraunhofer-Gesellschaft, 1994). Online sales of music in the US doubled in 2005, according to a recent news article (*), while the number of files exchanged on P2P platforms is much higher, but hard to estimate.
The existing and coming informational flood in digital music prompts the need for sophisticated content-based information retrieval. Query-by-Humming is a prototypical technique aimed at locating pieces of music by melody; automatic annotation algorithms seek to enable finer search criteria, such as instruments, genre, or meter. Score transcription systems strive for an abstract, compressed form of a piece of music understandable by composers and musicians.
Much research still has to be performed to achieve these goals.
This thesis connects essential knowledge about music and human auditory perception with signal processing algorithms to solve the specific problem of pitch estimation. The designed algorithm obtains an estimate of the magnitude spectrum via STFT and models the harmonic structure of each pitch contained in the magnitude spectrum with Gaussian density mixtures, whose parameters are subsequently estimated via an Expectation-Maximization (EM) algorithm.
Heuristics for EM initialization are formulated mathematically.
The system is implemented in MATLAB, featuring a GUI that provides for visual (spectrogram) and numerical (console) verification of results. The algorithm is tested using an array of data ranging from single to triple superposed instrument recordings. Its advantages and limitations are discussed, and a brief outlook over potential future research is given.
(*) "Online and Wireless Music Sales Tripled in 2005"; Associated Press; January 19, 2006
|
19 |
The impact of ignoring a level of nesting structure in multilevel growth mixture model: a Monte Carlo studyChen, Qi 2008 August 1900 (has links)
The number of longitudinal studies has increased steadily in various social science
disciplines over the last decade. Growth Mixture Modeling (GMM) has emerged among
the new approaches for analyzing longitudinal data. It can be viewed as a combination of
Hierarchical Linear Modeling, Latent Growth Curve Modeling and Finite Mixture
Modeling. The combination of both continuous and categorical latent variables makes
GMM a flexible analysis procedure. However, when researchers analyze their data using
GMM, some may assume that the units are independent of each other even though it may
not always be the case. The purpose of this dissertation was to examine the impact of
ignoring a higher nesting structure in Multilevel Growth Mixture Modeling on the
accuracy of classification of individuals and the accuracy on tests of significance (i.e.,
Type I error rate and statistical power) of the parameter estimates for the model in each
subpopulation. Two simulation studies were conducted. In the first study, the impact of
misspecifying the multilevel mixture model is investigated by ignoring a level of nesting
structure in cross-sectional data. In the second study, longitudinal clustered data (e.g.,
repeated measures nested within units and units nested within clusters) are analyzed
correctly and with a misspecification ignoring the highest level of the nesting structure. Results indicate that ignoring a higher level nesting structure results in lower classification
accuracy, less accurate fixed effect estimates, inflation of lower-level variance estimates,
and less accurate standard error estimates, the latter result which in turn affects the
accuracy of tests of significance for the fixed effects. The magnitude of the intra-class
correlation (ICC) coefficient has a substantial impact when a higher level nesting structure
is ignored; the higher the ICC, the more variance at the highest level is ignored, and the
worse the performance of the model. The implication for applied researchers is that it is
important to model the multilevel data structure in (growth) mixture modeling. In addition,
researchers should be cautious in interpreting their results if ignoring a higher level nesting
structure is inevitable. Limitations concerning appropriate use of latent class analysis in
growth modeling include unknown effects of incorrect estimation of the number of latent
classes, non-normal distribution effects, and different growth patterns within-group and
between-group.
|
20 |
Speaker and Emotion Recognition System of Gaussian Mixture ModelWang, Jhong-yi 01 August 2006 (has links)
In this thesis, the speaker and emotion recognition system is established by PC and digit signal processor (DSP). Most speaker and emotion recognition systems are separately accomplished, but not combined together in the same system. In this thesis, it will show how speaker and emotion recognition systems are combined in the same system. In this system, the voice is picked up by a mike and through DSP to extract the characteristics. Then it passes the sample correctly, it can draw the result of distinguishing.
The recognition system is divided into four sub-systems: the pronunciation pre-process, the speaker training model, the speaker and emotion recognition, and the speaker confirmation. The pronunciation pre-process uses the mike to capture the voice, and through the DSP board to convey the voice to the SRAM, then movements dealt with pre-process. The speaker trained model uses the Gaussian mixture model to establish the average, coefficient of variation and weight value of the person who sets up speaker specifically. And we¡¦ll take this information to be the datum of the whole recognition system. The speaker recognition mainly uses the density of probability to recognition the speaker¡¦s identity. The emotion recognition takes advantage of the coefficient of variation to recognize the emotion. The speaker confirms is set up to sure whether the user is the same speaker who hits for the systematic database.
The recognition system based on DSP includes two parts¡GHardware setting and implementation of speaker algorithm. We use the fixed-arithmetician DSP chip (chipboard) in the DSP, the algorithm of recognition is Gaussian mixture model. In addition, compared with floating point, the fixed point DSP cost much less; it makes the system nearer to users.
|
Page generated in 0.066 seconds