• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Minimum virgin binder limits in recycled Superpave (SR) mixes in Kansas

Tavakol, Masoumeh January 1900 (has links)
Master of Science / Civil Engineering / Mustaque A. Hossain / Use of recycled materials in asphalt pavement has become widespread recently due to rising costs of virgin binder and increased attention to sustainability. Historically, recycled asphalt pavement (RAP) has been the most commonly used recycled material for hot-mix asphalt (HMA). However, recycled asphalt shingle (RAS), another recycled material, has recently become popular. Although there are some guidelines regarding use of RAP and RAS in HMA, their effects on mixture performance, especially on mixtures containing RAS, are not thoroughly understood. In this research, three recycled Superpave mixture designs from the Kansas Department of Transportation (KDOT) with 9.5 mm (SR-9.5A) and 19 mm (SR-19A) Nominal Maximum Aggregate Size (NMAS) were selected as control mixtures. Mixtures containing higher percentages of recycled materials (RAP and RAS) were developed using KDOT blending charts. A total of nine mixtures with varying virgin binder contents were designed and assessed for moisture susceptibility, rutting resistance, and fatigue cracking propensity using modified Lottman, Hamburg Wheel Tracking Device, flow number, Dynamic Modulus, and S-VECD direct tension fatigue tests. Results confirmed the effect of NMAS and material source on mixture performance. For SR-9.5A, the mixtures showed increased susceptibility to moisture and rutting damage below virgin binder content of 75%. For SR-19A, mixtures with virgin binder content of 70% showed satisfactory performance properties. Mixtures with virgin binder contents lower than 60% definitely showed inferior performance.
2

Quantification of the Role of The Effective Binder in the Performance of RAP – WMA Mixtures

ALSALIHI, MOHAMMED, 0000-0003-1930-5392 January 2020 (has links)
Over the past decades, several new technologies/materials (such as WMA, RAP, rubber, polymers, bio-binders…etc.) were incorporated into asphalt mixtures. However, current mix-design specifications evaluate all mixtures containing these different additives/technologies based on volumetric. Further, RAP incorporation in asphalt mixtures is still limited, and the influence of lowered production temperatures on RAP contribution in RAP-WMA mixtures is understudied. To tackle these issues, this study presents a comprehensive evaluation of the effect of production factors ( RAP content and source, binder grade, and production temperatures) on the effective binder in WMA-RAP mixtures, and the role of the effective binder in controlling mixture performance.The experimental program included evaluation of the compaction, cracking, and rutting performance of WMA-RAP mixtures produced with a different combination of the production factors. The Semi-Circular Bend (SCB) test at intermediate temperatures was used for cracking evaluation, while the Indirect Tension Test at High Temperatures (IDT-HT) was used for rutting evaluation. Further, the study included rheological characterization of extracted binder from the mixtures to investigate the role of the effective binder on cracking performance. The results showed that the effective binder properties are changed significantly with changes in the production factors, as measured by the extracted binder rheological properties. Also, the properties of the effective binder showed a direct control of the mixture performance as measured by the IDT-HT strength and the flexibility index obtained from the SCB test. Binder selection limits were developed for lab-produced WMA-RAP mixtures based on the Glover-Rowe parameter. Finally, a validation study was conducted using data from four different projects, including a field project in Texas, FHWA’s accelerated loading facility, a laboratory mixture study in Wisconsin, and a New Hampshire DOT study to confirm the refine the findings of this study. / Civil Engineering

Page generated in 0.0894 seconds