• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ubiquitous Scalable Graphics: An End-to-End Framework using Wavelets

Wu, Fan 19 November 2008 (has links)
"Advances in ubiquitous displays and wireless communications have fueled the emergence of exciting mobile graphics applications including 3D virtual product catalogs, 3D maps, security monitoring systems and mobile games. Current trends that use cameras to capture geometry, material reflectance and other graphics elements means that very high resolution inputs is accessible to render extremely photorealistic scenes. However, captured graphics content can be many gigabytes in size, and must be simplified before they can be used on small mobile devices, which have limited resources, such as memory, screen size and battery energy. Scaling and converting graphics content to a suitable rendering format involves running several software tools, and selecting the best resolution for target mobile device is often done by trial and error, which all takes time. Wireless errors can also affect transmitted content and aggressive compression is needed for low-bandwidth wireless networks. Most rendering algorithms are currently optimized for visual realism and speed, but are not resource or energy efficient on mobile device. This dissertation focuses on the improvement of rendering performance by reducing the impacts of these problems with UbiWave, an end-to-end Framework to enable real time mobile access to high resolution graphics using wavelets. The framework tackles the issues including simplification, transmission, and resource efficient rendering of graphics content on mobile device based on wavelets by utilizing 1) a Perceptual Error Metric (PoI) for automatically computing the best resolution of graphics content for a given mobile display to eliminate guesswork and save resources, 2) Unequal Error Protection (UEP) to improve the resilience to wireless errors, 3) an Energy-efficient Adaptive Real-time Rendering (EARR) heuristic to balance energy consumption, rendering speed and image quality and 4) an Energy-efficient Streaming Technique. The results facilitate a new class of mobile graphics application which can gracefully adapt the lowest acceptable rendering resolution to the wireless network conditions and the availability of resources and battery energy on mobile device adaptively."
2

Evaluation and Hardware Implementation of Real-Time Color Compression Algorithms

Ojani, Amin, Caglar, Ahmet January 2008 (has links)
A major bottleneck, for performance as well as power consumption, for graphics hardware in mobile devices is the amount of data that needs to be transferred to and from memory. In, for example, hardware accelerated 3D graphics, a large part of the memory accesses are due to large and frequent color buffer data transfers. In a graphic hardware block color data is typically processed using RGB color format. For both 3D graphic rasterization and image composition several pixels needs to be read from and written to memory to generate a pixel in the frame buffer. This generates a lot of data traffic on the memory interfaces which impacts both performance and power consumption. Therefore it is important to minimize the amount of color buffer data. One way of reducing the memory bandwidth required is to compress the color data before writing it to memory and decompress it before using it in the graphics hardware block. This compression/decompression must be done “on-the-fly”, i.e. it has to be very fast so that the hardware accelerator does not have to wait for data. In this thesis, we investigated several exact (lossless) color compression algorithms from hardware implementation point of view to be used in high throughput hardware. Our study shows that compression/decompression datapath is well implementable even with stringent area and throughput constraints. However memory interfacing of these blocks is more critical and could be dominating.

Page generated in 0.0531 seconds