• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation des structures de coeurs des dislocations dans les minéraux du manteau terrestre à l’aide du modèle de Peierls-Nabarro / Dislocation cores modelling in mantle minerals using the Peierls-Nabarro model

Metsue, Arnaud 06 January 2010 (has links)
La déformation plastique des minéraux des roches mantelliques joue un rôle-clé dans les phénomènes de convection globale à l’intérieur de la Terre. Cependant, les mécanismes de déformation des minéraux sont encore mal compris. Généralement, la déformation plastique est assurée par le mouvement des dislocations qui sont des défauts linéaires du cristal. La mobilité des dislocations est déterminée par la structure de coeur des défauts. Le modèle de Peierls-Nabarro auquel nous avons recours est un concept fondamental qui décrit la résistance qu’oppose le cristal au mouvement des dislocations au travers du calcul de la contrainte de Peierls et qui fournit également l’étalement du coeur de la dislocation dans le cristal. Développé il y a plus d'un demi-siècle, ce modèle connut un regain d’intérêts dans les années 70 avec l’introduction du concept de fautes d’empilement généralisées qui permet une description plus générale des coeurs de dislocations. La détermination de ces fautes consiste à calculer ab initio ou à l’aide de potentiels empiriques des barrières d’énergie associées au cisaillement d’un plan cristallographique donné dans une, deux ou toutes les directions. L’étude menée durant cette thèse s’est portée sur la détermination des structures de coeur des dislocations de la phase post-perovskite présente à la base du manteau mais également de la wadsleyite, de la forsterite et du diopside, trois minéraux majeurs entre la croûte et 520km de profondeur. L’utilisation du modèle de Peierls-Nabarro unidimensionnel dans un premier temps a été étendue aux trois dimensions de l’espace dans le but de modéliser des structures de coeur de dislocations de plus en plus complexes. / Plastic deformation of minerals in rocks plays an important role in the global convection of the Earth’s mantle. However, the deformation mechanisms of minerals are not well-known. In general, plastic deformation is due to the dislocation motion. The dislocations are linear defects of the crystal. The mobility of the dislocation is governed by the dislocation core structure.Here, we used the Peierls-Nabarro model that is a theoretical model to address the issue of dislocation core modelling. This model provides also the lattice friction of the crystal against the dislocation motion through the calculation of the Peierls stress. Developed more than 50 years, the model has a great interest since the 70’s with the introduction of the generalized stacking fault (GSF) concept that provides a general description of the dislocation core. The determination of the GSF consists in the calculations of energy barriers associated with the shearing of the crystal in a crystallographic plane in one or more directions. In this study, we have determined the dislocation core structures of the post-perovskite phase present at the core-mantle boundary and of the wadsleyite, diopside and forsterite, major minerals from the crust to 510Km deep. We used the one-dimension formulation of the Peierls-Nabarro model in a first time that has been extended to three dimensions in order to model much more complex dislocation cores.
2

Modélisation de l’interaction des coeurs de dislocations et des joints de grains / Modeling the interaction of dislocations cores and grains boundaries

Gbemou, Kodjovi 26 April 2017 (has links)
Durant cette thèse, on s’intéresse à l’application et au développement d’une théorie de mécanique des champs de dislocations et de désinclinaisons pour modéliser de façon continue les structures de cœur des dislocations et des joints de grains ainsi que leurs interactions. Le vecteur de Burgers/Frank des dislocations/désinclinaisons est régularisé par l’introduction d’un tenseur densité de dislocations/désinclinaisons. A ces densités de défauts sont associées des déformations et des courbures élastiques et plastiques incompatibles responsables de champs de contraintes et de moments de contraintes internes. Le mouvement des défauts produit de la plasticité et est pris en compte par des équations de transport qui font intervenir des forces motrices agissant sur les densités de défauts. Dans un premier temps, les désinclinaisons sont ignorées et nous appliquons la théorie de champ de dislocations seule pour étudier les structures de cœur de dislocations planaires en comparaison avec le modèle de Peierls-Nabarro. La relaxation d’une structure de cœur de dislocation coin initiale arbitraire révèle un étalement infini des densités de dislocations sous l’action de leur propre champ de contrainte interne. Pour stopper cette relaxation infinie, nous proposons d’ajouter une énergie de misfit dans notre modèle. Cette dernière donne lieu à une contrainte de rappel qui s’oppose à l’étalement des cœurs de dislocations et permet d’obtenir des configurations équilibrées. On retrouve la solution de Peierls-Nabarro si on utilise un potentiel sinusoïdal pour l’énergie. Nous substituons ensuite ce potentiel par des énergies de fautes d’empilement généralisées obtenues à partir de simulations atomistiques pour modéliser la dissociation des dislocations et leur mouvement dans le zirconium et le titane. Dans un deuxième temps, nous considérons la théorie complète et nous développons des lois d’élasticité constitutives qui sont propres aux défauts cristallins. Nous proposons qu’en plus des tenseurs élastiques habituels, des tenseurs d’élasticité additionnels existent au niveau du cœur des défauts et relient respectivement les contraintes aux courbures et les moments de contraintes aux déformations. Ces tenseurs sont de nature non locale par définition à cause des relations cinématiques entre déformations et courbures. Ils sont non nuls au niveau des cœurs des défauts où les hétérogénéités de déformations et de courbures sont fortes et deviennent nuls loin des défauts par centrosymétrie. On applique ces nouvelles lois d’élasticité à des distributions de dislocations et de désinclinaisons. On montre que les termes non locaux donnent lieu à des contraintes/moments de contraintes de rappel qui s’opposent aux parties locales. Dans le cas de la dislocation coin, on montre que sa représentation avec un dipôle de désinclinaison coin permet d’obtenir une configuration équilibrée sans l’ajout d’énergie de misfit. On étudie ensuite les interactions élastiques entre dislocations et joints de grains / In this contribution, we apply and develop a mechanical theory of dislocation and disclination fields, to model in a continuous way the core structure of dislocations and grain boundaries, as well as their interactions. The Burgers/Frank vector of dislocations/disclinations is regularized by the introduction of dislocation/disclination density tensors. Incompatible elastic and plastic strains and curvatures are associated to these defect densities and they lead to internal stress and couple stress fields. The motion of defects yields plasticity. It is accounted for by transport equations, where driving forces act on the defect densities. First, we overlook disclinations and we apply the pure dislocation model to investigate the structure of planar dislocation cores, in comparison with the Peierls-Nabarro model. The self-relaxation of an initially arbitrary core structure of an edge dislocation reveals that an infinite spreading of the dislocation density occurs under its own stress field. To stop this endless relaxation, we propose to add a misfit energy in our model. The latter yields a restoring stress that opposes to the spreading of dislocation cores and allows predicting equilibrium core structures. We retrieve the Peierls-Nabarro solution when we use a sinusoidal potential for the misfit energy. We then substitute this sinusoidal potential for generalized stacking fault energies as obtained from atomistic simulations, in order to model the dissociation and motion of dislocations in zirconium and titanium. Second, we consider the full theory and we develop elastic constitutive laws that are specific to crystal defects. We propose that in addition to standard elasticmoduli tensors, additional elastic tensors exist in the core regions of defects and relate respectively stresses to curvatures and couple stresses to strains. These tensors are nonlocal by definition due to kinematic relations between strains and curvatures. They are non-zero in the core of defects, where strong heterogeneities of strains and curvatures occur, and they become progressively null far from the defects due to centrosymmetry. We apply these new elastic laws to distributions of dislocations and disclinations. We show that the nonlocal elastic tensors lead to restoring stresses and couple stresses that oppose to their local parts. In the framework of edge dislocations, we show that the representation using dipoles of wedge disclination cores allows predicting equilibrium structures without adding a misfit energy. We then investigate elastic interactions between dislocations and grain boundaries

Page generated in 0.0487 seconds