• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèles à Facteurs Conditionnellement Hétéroscédastiques et à Structure Markovienne Cachée pour les Séries Financières

Saidane, Mohamed 05 July 2006 (has links) (PDF)
Dans cette thèse nous proposons une nouvelle approche dans le cadre des modèles d'évaluation des actifs financiers permettant de tenir compte de deux aspects fondamentaux qui caractérisent la volatilité latente: co-mouvement des rendements financiers conditionnellement hétéroscédastiques et changement de régime. En combinant les modèles à facteurs conditionnellement hétéroscédastiques avec les modèles de chaîne de Markov cachés, nous dérivons un modèle multivarié localement linéaire et dynamique pour la segmentation et la prévision des séries financières. Nous considérons, plus précisément le cas où les facteurs communs suivent des processus GQARCH univariés. L'algorithme EM que nous avons développé pour l'estimation de maximum de vraisemblance et l'inférence des structures cachées est basé sur une version quasi-optimale du filtre de Kalman combinée avec une approximation de Viterbi. Les résultats obtenus sur des simulations, aussi bien que sur des séries financières sont prometteurs.

Page generated in 0.0807 seconds