• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions aux méthodes bayésiennes approchées pour modèles complexes / Contributions to Bayesian Computing for Complex Models

Grazian, Clara 15 April 2016
Récemment, la grande complexité des applications modernes, par exemple dans la génétique, l’informatique, la finance, les sciences du climat, etc. a conduit à la proposition des nouveaux modèles qui peuvent décrire la réalité. Dans ces cas,méthodes MCMC classiques ne parviennent pas à rapprocher la distribution a posteriori, parce qu’ils sont trop lents pour étudier le space complet du paramètre. Nouveaux algorithmes ont été proposés pour gérer ces situations, où la fonction de vraisemblance est indisponible. Nous allons étudier nombreuses caractéristiques des modèles complexes: comment éliminer les paramètres de nuisance de l’analyse et faire inférence sur les quantités d’intérêt,dans un cadre bayésienne et non bayésienne et comment construire une distribution a priori de référence. / Recently, the great complexity of modern applications, for instance in genetics,computer science, finance, climatic science etc., has led to the proposal of newmodels which may realistically describe the reality. In these cases, classical MCMCmethods fail to approximate the posterior distribution, because they are too slow toinvestigate the full parameter space. New algorithms have been proposed to handlethese situations, where the likelihood function is unavailable. We will investigatemany features of complex models: how to eliminate the nuisance parameters fromthe analysis and make inference on key quantities of interest, both in a Bayesianand not Bayesian setting, and how to build a reference prior.

Page generated in 0.0539 seconds