• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Transitions de Phase Quantiques dans des Modèles de Spin Collectif. Applications au Calcul Adiabatique

Ribeiro, Pedro 12 September 2008 (has links) (PDF)
Partie I: Modèles de spin collectif On utilise le formalisme des états cohérents de spin pour étudier des modèles de spin collectif, qui ont plusieurs champs d'application en physique. Le modèle de Lipkin-Meshkov-Glick (LMG) a en particulier été analysé à la limite thermodynamique. La méthode développée au cours de ce travail peut être utilisée, en principe, pour des Hamiltoniens plus généraux, s'écrivant en fonction des générateurs de l'algèbre su(2). Nous avons pu dériver exactement la densité d'états intégrée du modèle. La nature des singularités de la densité d'états a été mise en évidence. Les premières corrections de taille finie ont également été calculées. Les valeurs moyennes d'observables ont été étudiées. Près des singularités, la quantification de Bohr-Sommerfeld, adaptée aux spins, n'est pas valable. Pour traiter ces cas, nous avons développé une nouvelle approche, permettant alors de décrire le spectre au voisinage des points critiques. Partie II : Calcul quantique adiabatique Nous avons construit un modèle simple permettant de mettre en évidence la relation entre les transitions de phase quantiques et le calcul (quantique) adiabatique. Ce modèle met en évidence l'importance du choix du Hamiltonien initial et du chemin adiabatique considéré dans l'espace des paramètres, et peut servir comme un cas d'école pour des modèles plus réalistes. Nous avons enfin étudié la dynamique des populations des états à travers une transition de phase, pour le cas du modèle LMG abordé dans la première partie. Une analyse numérique nous a montré que ces changements de population sont très sensibles à la présence des points exceptionnels dans le spectre, ce qu'un modèle simplifié de l'évolution quantique permettait de suggérer.
2

Contraintes Topologiques et Ordre dans les Systèmes Modèle pour le Magnétisme Frustré / Topological Constraints and Ordering in Model Frustrated Magnets

Harman-Clarke, Adam 11 November 2011 (has links)
Dans cette thèse, l’étude de plusieurs modèles de systèmes magnétiques frustrés a été couverte. Leur racine commune est le modèle de la glace de spin, qui se transforme en modèle de la glace sur réseau kagome (kagome ice) et réseau en damier (square ice) à deux dimensions, et la chaîne d’Ising à une dimension. Ces modèles ont été particulièrement étudiés dans le contexte de transitions de phases avec un ordre magnétique induit par les contraintes du système : en effet, selon la perturbation envisagée, les contraintes topologiques sous-jacentes peuvent provoquer une transition de Kasteleyn dans le kagome ice, ou une transition de type vitreuse dans la square ice, due à l’émergence d’un ordre ferromagnétique dans une chaîne d’Ising induit seulement par des effets de taille fini. Dans tous les cas, une étude détaillée par simulations numériques de type Monte Carlo ont été comparées à des résultats théoriques pour déterminer les propriétés de ces transitions. Les contraintes topologiques du kagome ice ont requis le développement d’un algorithme de vers permettant aux simulations de ne pas quitter l’ensemble des états fondamentaux. Une revue poussée de la thermodynamique et de la réponse de la diffraction de neutrons sur kagome ice sous un champ magnétique planaire arbitraire, nous ont amené à une compréhension plus profonde de la transition de Kasteleyn, et à un modèle numérique capable de prédire les figures de diffraction de neutrons de matériau de kagome ice dans n’importe quelles conditions expérimentales. Sous certaines conditions, ce modèle a révélé des propriétés thermodynamiques quantifiées et devrait fournir un terreau fertile pour de futurs travaux sur les conséquences des contraintes et transitions de phases topologiques. Une étude combinée du square ice et de la chaîne d’Ising a mise en lumière l’apparition d’un ordre sur réseau potentiellement découplé de l’ordre ferromagnétique sous-jacent, et particulièrement pertinent pour les réseaux magnétiques artificiels obtenus par lithographie. / In this thesis a series of model frustrated magnets have been investigated. Their common parent is the spin ice model, which is transformed into the kagome ice and square ice models in two-dimensions, and an Ising spin chain model in one-dimension. These models have been examined with particular interest in the spin ordering transitions induced by constraints on the system: a topological constraint leads, under appropriate conditions, to the Kasteleyn transition in kagome ice and a lattice freezing transition is observed in square ice which is due to a ferromagnetic ordering transition in an Ising chain induced solely by finite size effects. In all cases detailed Monte Carlo computational simulations have been carried out and compared with theoretical expressions to determine the characteristics of these transitions. In order to correctly simulate the kagome ice model a loop update algorithm has been developed which is compatible with the topological constraints in the system and permits the simulation to remain strictly on the groundstate manifold within the appropriate topological sector of the phase space. A thorough survey of the thermodynamic and neutron scattering response of the kagome ice model influenced by an arbitrary in-plane field has led to a deeper understanding of the Kasteleyn transition, and a computational model that can predict neutron scattering patterns for kagome ice materials under any experimental conditions. This model has also been shown to exhibit quantised thermodynamic properties under appropriate conditions and should provide a fertile testing ground for future work on the consequences of topological constraints and topological phase transitions. A combined investigation into the square ice and Ising chain models has revealed ordering behaviour within the lattice that may be decoupled from underlying ferro- magnetic ordering and is particularly relevant to magnetic nanoarrays.

Page generated in 0.0818 seconds