• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Réseaux artificiels à frustration géométrique / Artificial geometrically frustrated arrays

Perrin, Yann 21 October 2016 (has links)
Les réseaux de nanoaimants à frustration géométrique font l'objet d'investigations depuis maintenant une décennie. Ils permettent de réaliser expérimentalement des modèles de spins théoriques qui n'ont parfois pas d'équivalent naturel. Ces réseaux présentent, entre autres, l'intérêt d'offrir un accès direct aux configurations locales de spin. Le travail présenté dans ce manuscrit vise à réaliser expérimentalement le modèle dit de "glace carrée" dans un réseau nanoaimants. Ce modèle hautement frustré présente un état fondamental massivement dégénéré, à l'origine de son entropie résiduelle à basse température. Dans ce travail, nous allons présenter deux approches permettant de réaliser le modèle de glace carrée.La première consiste à introduire dans le réseau carré conventionnel des nanoaimants supplémentaires. Sous certaines conditions, ceux-ci agissent en modifiant les couplages effectifs entre les aimants du réseau principal. Pour cela, les aimants additionnels doivent se comporter passivement vis à vis du réseau principal. Dans une étude théorique, nous montrerons que l'analyse du hamiltonien dans l'espace réciproque échoue à saisir les propriétés essentielles de ce nouveau modèle. C'est en calculant l'énergie de configurations aléatoires de spins que nous prouverons que notre système présente les caractéristiques recherchées. Nous porterons une attention particulière à l'effet de la portée et de la nature des interactions entre aimants. Grâce à des simulations micromagnétiques par différences finies, nous déterminerons les géométries pertinentes à employer pour une réalisation expérimentale. Grâce aux outils de microfabrication disponibles au laboratoire, nous avons pu fabriquer de tels réseaux. Les aimants sont constitués de permalloy mince, ce qui leur permet d'atteindre un régime superparamagnétique lors d'un recuit thermique. Nous avons observé que les aimants additionnels influencent comme prévu la physique du réseau carré. Un biais expérimental a cependant engendré une aimantation rémanente élevée dans certains réseaux. Cet effet a malheureusement masqué les corrélations caractéristiques attendues dans le modèle de glace carrée. Mais ces travaux ont permis de mettre en évidence un effet inattendu des aimants additionnels. Ceux-ci semblent stimuler les fluctuations thermiques dans les réseaux qui en sont pourvus.La seconde approche consiste à surélever les aimants orientés dans l'une des deux directions du réseau carré. Nous emploierons une méthodologie similaire à celle décrite précédemment pour l'étude de ce nouveau système. Théoriquement, le contrôle de la surélévation permet d'explorer trois modèles de spins différents, dont le modèle de glace carrée. Nous avons fabriqué des réseaux avec plusieurs surélévations, estimées au moyen de simulations micromagnétiques. Pour des raisons techniques, nous avons cette fois travaillé avec des nanoaimants de permalloy épais. Ils présentent la caractéristique d'être athermiques. Les fluctuations sont alors introduites grâce à un champ magnétique tournant et décroissant. Nous montrerons par des simulations que cette dynamique particulière stimule l'apparition de corrélations ferromagnétiques. La désaimantation réduit alors les surélévations nécessaires à la réalisation du modèle de glace carrée. Nous avons observé expérimentalement que l'effet de la surélévation est parfaitement cohérent avec nos prévisions. Les facteurs de structure que nous avons obtenus prouvent que nous avons réussi à réaliser le modèle de glace avec des nanoaimants. Cette approche nous a permis d'observer pour la première fois une phase de Coulomb dans l'espace direct. Ce travail ouvre des perspectives intéressantes pour l'étude des excitations existant dans cette phase, analogues à des monopoles magnétiques classiques. / Since a decade, a big interest has grown about geometrically frustrated nanomagnets arrays. They allow experimental realisation of theoretical spin models, that sometimes have no natural counterpart. In addition to their high flexibility, these networks provide a direct access to local spin configurations. The work presented in this manuscript aims to realise experimentally the so-called "square ice" model, using nanomagnets array. This highly frustrated model has already been theoretically studied. It is found to have a massively degenerated ground state, associated to a residual entropy at low temperature. In this thesis, we present two approaches that should achieve the square ice model.The first one consists to introduce additional magnets in the conventional square nanomagnets array. They can act through an effective coupling between the magnets of the initial network. The condition required is that additional magnets should behave passively against main magnets. We will show in a theoretical study that a reciprocal space analysis of the Hamiltonian fails to grasp the essential properties of the new model. By computing the energy of a number of random spins configurations, we will show that the square ice model can be achieved. A special attention will be paid to the influence of the range and the nature of magnets interactions. Using finite-difference micromagnetic simulations, we will determine the geometries adapted to an experimental realisation. We were able to make such networks using the microfabrication tools available in the laboratory. Our magnets are made of thin permalloy films. This allows the magnets to reach a superparamagnetic regime during a thermal annealing. We observed that additional magnets have the expected influence on square nanomagnets arrays. However, an experimental bias caused a high residual magnetisation in some networks. This effect has unfortunately hided the correlations expected in the square ice model. But this work shown an unexpected effect. Additional magnets appear to enhance thermal fluctuations in the networks.The second approach is to raise the magnets oriented in one of the two directions of the square lattice. For the study of this new system, a methodology similar to that described above will be used. Theoretically, the control of the elevation can explore three different spins models, including the square ice model. We made arrays for different elevations, estimated by micromagnetic calculations. For technical reasons, we worked with thick permalloy nanomagnets. Their thickness makes them insensitive to thermal fluctuations. Fluctuations are then introduced using a decreasing rotating magnetic field. Our simulations show that this particular dynamic stimulates emergence of ferromagnetic correlations. The field demagnetisation then reduce the elevations required for achieving the square ice model. We have experimentally observed that the elevation has an effect perfectly consistent with our previsions. Experimental structure factors show that we succeed to achieve the square ice model with nanomagnets. This approach allowed us to observe, for the first time, a Coulomb phase in the real space. This work opens interesting perspectives for studying the excitations of this phase. It has previously been shown that they are similar to classical magnetic monopoles.
2

Glaces kagomé de spins artificiels : de la dégénérescence à courte-portée vers l'ordre dipolaire / Artificial Kagome Spin Networks - From Short-Range Degeneracy towards Long-Range Dipolar Order

Chioar, Ioan-Augustin 16 October 2015 (has links)
Les réseaux artificiels de spin ont été initialement introduites pour l'étude des effets de frustration géométrique dans des réseaux bidimensionnelles de spin, un approche complémentaire à l'étude de la frustration rencontré dans les glaces pyrochlores de spin. Généralement fabriqués en utilisant des techniques de lithographie, ces réseaux de nanoaimants peuvent être élaborer avec une grande degré de liberté. Etant donné la taille et la forme de ces plots magnétiques, l'aimantation est presque uniforme dans tout leur volume, un aspect qui fait que ces aimants peuvent être considérés comme des spin Ising classique géants. Avec la possibilité d'imager chacun degrée de liberté magnétique dans l'espace direct, ces systèmes offrent un large spectre d'opportunités pour l'étude de la frustration dans un cadre magnétostatiques bidimensionnelle et la potentielle découverte de phases magnétiques exotiques. Toutefois, contrairement à leurs homologues de la matière condensée, la première génération de glaces de spin artificiels sont pratiquement insensibles aux fluctuations thermiques. Par conséquence, d'autres dynamiques sont nécessaires pour amener ces systèmes vers leurs variétés de basse énergie et un protocole de désaimantation a été généralement utilisé dans ce sens, mais ce processus arrivent à accommoder juste partiellement les interactions entre les nanoaimants. Plus récemment, des réseaux artificiels de spin thermiquement-actives ont été introduits, permettant de dépasser les limitations des réseaux désaimantes pour la recherche des textures de spin exotiques.Cette thèse présente des études expérimentales et numériques réalisés sur des réseaux kagomé de spin. La glace artificielle kagomé planaire a été un point central d'intérêt pendant les dernières années, grâce à ses variétés énergétiques hautement dégénérés et aux textures de spin non-conventionnelles. Ainsi, dans un cadre magnétostatique, il présent une phase exotique caractérisée par la coexistence d'un état cristallin, associée à la charge magnétique, et un réseau de spin désordonnés. Bien que la désaimantation n'arrive pas d'accéder cet état remarquable, les réseaux thermiquement actives ont réussi de créer des cristallites de cette phase. La première partie de ce travail présente le protocole expérimental utilisé pour réaliser cet état. En plus, un modèle cinétique est proposé qui reproduit avec succès les caractéristiques observées et explique l'efficacité de cette approche.Dans un deuxième temps, un étude sur un nouveau système de glace de spin artificielle est présenté: le réseau kagomé Ising artificielle. Ce système présentent des moments magnétiques qui pointent selon l'axe verticale, contrairement au réseau kagomé planaire. Un étude récent sur ce système a conclu que, après la démagnétisation, ces deux réseaux kagomé artificiels présentent des corrélations de spins similaires et leurs états magnétiques rémanentes peuvent être bien caractérisées par des modèles de spin basés sur des interactions à courte portée. Avec des protocoles de désaimantation, des mesures de microscopie à force magnétique et des simulations Monte Carlo, il est montré que les interactions dipolaires à longue portée entre les éléments magnétiques ne peuvent pas être négligés lors de la description des états rémanents des réseaux kagome Ising artificiels désaimantées. Ces résultats limitent la validité du comportement universel entre les deux réseaux kagomé artificiels et enrichissent la palette de phases magnétiques qui peuvent être réaliser avec de tels systèmes nanostructurés. Les simulations Monte Carlo indiquent que ce réseau kagomé Ising présente un comportement de basse énergie différente de la glace kagomé planaire, mais la variétés fondamentale dans ce cadre dipolaire reste inconnu. Toutefois, en inspectant ses caractéristiques thermodynamiques à basse température et grâce une construction géométrique, un candidat pour l'état fondamental est fourni. / Artificial spin networks were initially proposed as toy-spin models destined for the investigation of magnetic frustration effects in two-dimensional spin lattices, a complementary approach to the study of the magnetic frustration encountered in spin ice pyrochlores. Generally fabricated via lithography techniques, these arrays of nano-scale magnetic islands can be designed at-will. Given the size and shape of the elements, their magnetization is almost uniform throughout their volume, thus making these islands act like classical Ising spins. Combined with the possibility of individually imaging the magnetic degrees of freedom in real space, these systems offer an almost infinite playground for the investigation of competing interactions in magnetostatic frameworks and potential for the experimental discovery of novel and exotic magnetic phases. However, unlike their condensed matter counterparts, first-generation artificial spin networks are insensitive to thermal fluctuations, requiring other driving mechanisms for accessing their complex low-energy manifolds. A field-protocol has been employed for driving such networks towards their ground-state configurations, although they only partially manage to accommodate pair-island interactions. More recently, thermally-active artificial spin networks have been introduced, surpassing the limits of demagnetized arrays in the quest for exotic low-energy spin textures.This thesis presents experimental and numerical studies performed on artificial kagome spin arrays, one of the most frustrated two-dimensional lattices. The kagome spin ice geometry has received most of the community's attention as it presents highly degenerate manifolds and unconventional spin textures. Within a dipolar long-range framework, it displays a low-temperature regime characterized by the coexistence of a crystalline phase, associated to the magnetic charge, and a disordered spin lattice. While demagnetizing such artificial kagome arrays cannot access this exotic state, thermally-active networks can locally retrieve such a phase, creating crystallites of antiferromagnetically-ordered magnetic charges. The first part of this work presents the experimental protocol employed to this purpose. A kinetic model is also proposed that successfully captures the observed experimental features and explains the efficiency of this approach.The second part of the current thesis presents a study of a novel artificial spin ice system, the artificial kagome Ising network. This network primarily differs from the kagome spin ice array by having its magnetic moments pointing along the vertical axis. A recent study of this system has concluded that, after demagnetization, these two artificial kagome networks display similar pairwise spin correlation development and their final frozen states can be well characterized by short-range interaction models. Through the use of demagnetization protocols, magnetic force microscopy and Monte Carlo simulations, it is demonstrated that long-range dipolar interactions between the magnetic elements cannot be neglected when describing the remanent states of demagnetized artificial kagome Ising networks. These results assess the limits of the reported universal behavior of artificial kagome lattices and enrich the spectrum of magnetic phases that could be achieved with such nanostructured systems. Indeed, Monte Carlo simulations indicate that this kagome Ising network presents a different low-energy behavior than kagome spin ice, the incipient stages of which have been accessed experimentally, but its dipolar ground-state configuration remains unknown. Nevertheless, by inspecting the low-temperature thermodynamic features of this array and through the use of a geometrical construction, a ground-state candidate is provided.
3

Quantum simulation of spin models with assembled arrays of Rydberg atoms / Simulation quantique de modèles de spins dans des matrices d’atomes de Rydberg

De leseleuc de kerouara, Sylvain 10 December 2018 (has links)
Des atomes individuels piégés dans des matrices de pinces optiques et excités vers des états de Rydberg forment une plateforme expérimentale prometteuse pour la simulation quantique de modèles de spins. Lors de cette thèse, nous avons d’abord résolu le problème du chargement aléatoire des pièges, seulement 50 % d’entre eux étant chargés avec un atome. Nous avons développé une technique pour préparer des matrices 2D, puis 3D, d’atomes de 87Rb en les déplaçant un par un avec une pince optique mobile contrôlée par ordinateur. Nous avons ensuite réalisé le modèle d’Ising en excitant de manière cohérente les atomes depuis leur état électronique fondamental vers un niveau de Rydberg. Après avoir trouvé un régime optimal où l’interaction dipolaire entre deux atomes de Rydberg se réduit à une énergie de van der Waals, nous avons tenté de préparer adiabatiquement l’état de Néel qui minimise l’énergie d’interaction. Nous avons montré que l’efficacité de préparation étaitlimitée par la décohérence induite par les lasers d’excitation. Nous avons ensuite utilisé un autre régime d’interaction, le couplage dipolaire résonant, pour étudier des modèles de spins de type XY, dont le modèle Su-Schrieffer-Heeger, connu pour sa phase fermionique topologique protégée par une symétrie chirale. Ici, nous avons remplacé les fermions par des particules effectives de type `boson de cœur dur’, ce qui modifie les propriétés de cette phase. Nous avons d’abord retrouvé les propriétés à une particule, comme l’existence d’états de bords à énergie nulle. Nous avons ensuite préparé l’état fondamental à N corps pour un remplissage moitié, et observé sa dégénérescence causée par les états de bords, même en présence d’une perturbation qui lèverait cette dégénérescence dans le cas fermionique. Nous avons expliqué ce résultat par l’existence d’une symétrie plus générale, qui protège la phase bosonique. / Single atoms trapped in arrays of optical tweezers and excited to Rydberg states are a promising experimental platform for the quantum simulation of spin models. In this thesis, we first solved a long-standing challenge to this approach caused by the random loading of the traps, with only 50% of them filled with single atoms. We have engineered a robust and easy-to-use method to assemble perfectly filled two-dimensional arrays of 87Rb atoms by moving them one by one with a moveable optical tweezers controlled by computer, a technique further enhanced to trap, image and assemble three-dimensional arrays. We then implemented the quantum Ising model by coherently coupling ground-state atoms to a Rydberg level. After finding experimental parameters where the dipole-dipole interaction takes the ideal form of a van der Waals shift, we performed adiabatic preparation of the Néel state. We showed that the coherence time of our excitation lasers limited the efficiency of this technique. We then used a different type of interaction, a resonant dipolar coupling, to implement XY spin models and notably the Su-Schrieffer-Heeger model, known for its fermionic topological phase protected by the chiral symmetry. Here, we used effective hard-core bosons, which modify the properties of the topological phase. We first recovered known properties at the single particle level, such as the existence of localized zero-energy edge-states. Then, preparing the many-body ground state at half-filling, we observed a surprising robustness of its four-fold degeneracy upon applying a perturbation. This result was explained by the existence of a more general symmetry protecting the bosonic phase.
4

Out-of-equilibrium dynamics in a quantum impurity model / Dynamique hors d'équilibre dans un modèle d'impureté quantique

Bidzhiev, Kemal 07 October 2019 (has links)
Le domaine des problèmes quantiques à N-corps à l'équilibre et hors d'équilibre sont des sujets majeurs de la Physique et de la Physique de la matière condensée en particulier. Les propriétés d'équilibre de nombreux systèmes unidimensionnels en interaction sont bien comprises d'un point de vue théorique, des chaînes de spins aux théories quantiques des champs dans le continue. Ces progrès ont été rendus possibles par le développement de nombreuses techniques puissantes, comme, par exemple, l'ansatz de Bethe, le groupe de renormalisation, la bosonisation, les états produits de matrices ou la théorie des champs invariante conforme. Même si les propriétés à l'équilibre de nombreux modèles soient connues, ceci n'est en général pas suffisant pour décrire leurs comportements hors d'équilibre, et ces derniers restent moins explorés et beaucoup moins bien compris. Les modèles d'impuretés quantiques représentent certains des modèles à N-corps les plus simples. Mais malgré leur apparente simplicité ils peuvent capturer plusieurs phénomènes expérimentaux importants, de l'effet Kondo dans les métaux aux propriétés de transports dans les nanostructures, comme les points quantiques. Dans ce travail nous considérons un modèle d'impureté appelé "modèle de niveau résonnant en interaction" (IRLM). Ce modèle décrit des fermions sans spin se propageant dans deux fils semi-infinis qui sont couplés à un niveau résonant -- appelé point ou impureté quantique -- via un terme de saut et une répulsion Coulombienne. Nous nous intéressons aux situations hors d'équilibre où un courant de particules s'écoule à travers le point quantique, et étudions les propriétés de transport telles que le courant stationnaire (en fonction du voltage), la conductance différentielle, le courant réfléchi, le bruit du courant ou encore l'entropie d'intrication. Nous réalisons des simulations numériques de la dynamique du modèle avec la méthode du groupe de renormalisation de la matrice densité dépendent du temps (tDMRG), qui est basée sur une description des fonctions d'onde en terme d'états produits de matrices. Nous obtenons des résultats de grande précision concernant les courbes courant-voltage ou bruit-voltage de l'IRLM, dans un grand domaine de paramètres du modèle (voltage, force de l'interaction, amplitude de saut vers le dot, etc.). Ces résultats numériques sont analysés à la lumière de résultats exacts de théorie des champs hors d'équilibre qui ont été obtenus pour un modèle similaire à l'IRLM, le modèle de Sine-Gordon avec bord (BSG). Cette analyse est en particulier basée sur l'identification d'une échelle d'énergie Kondo et d'exposants décrivant les régimes de petit et grand voltage. Aux deux points particuliers où les modèles sont connus comme étant équivalents, nos résultats sont en accord parfait avec la solution exacte. En dehors de ces deux points particuliers nous trouvons que les courbes de transport de l'IRLM et du modèle BSG demeurent très proches, ce qui était inattendu et qui reste dans une certaine mesure inexpliqué. / The fields of in- and out-of-equilibrium quantum many-body systems are major topics in Physics, and in condensed-matter Physics in particular. The equilibrium properties of one-dimensional problems are well studied and understood theoretically for a vast amount of interacting models, from lattice spin chains to quantum fields in a continuum. This progress was allowed by the development of diverse powerful techniques, for instance, Bethe ansatz, renormalization group, bosonization, matrix product states and conformal field theory. Although the equilibrium characteristics of many models are known, this is in general not enough to describe their non-equilibrium behaviors, the latter often remain less explored and much less understood. Quantum impurity models represent some of the simplest many-body problems. But despite their apparent simplicity, they can capture several important experimental phenomena, from the Kondo effect in metals to transport in nanostructures such as point contacts or quantum dots. In this thesis consider a classic impurity model - the interacting resonant level model (IRLM). The model describes spinless fermions in two semi-infinite leads that are coupled to a resonant level -- called quantum dot or impurity -- via weak tunneling and Coulomb repulsion. We are interested in out-of-equilibrium situations where some particle current flows through the dot, and study transport characteristics like the steady current (versus voltage), differential conductance, backscattered current, current noise or the entanglement entropy. We perform extensive state-of-the-art computer simulations of model dynamics with the time-dependent density renormalization group method (tDMRG) which is based on a matrix product state description of the wave functions. We obtain highly accurate results concerning the current-voltage and noise-voltage curves of the IRLM in a wide range parameter of the model (voltage bias, interaction strength, tunneling amplitude to the dot, etc.).These numerical results are analyzed in the light of some exact out-of-equilibrium field-theory results that have been obtained for a model similar to the IRLM, the boundary sine-Gordon model (BSG).This analysis is in particular based on identifying an emerging Kondo energy scale and relevant exponents describing the high- and low- voltage regimes. At the two specific points where the models are known to be equivalent our results agree perfectly with the exact solution. Away from these two points, we find that, within the precision of our simulations, the transport curves of the IRLM and BSG remain very similar, which was not expected and which remains somewhat unexplained.

Page generated in 0.0853 seconds