Spelling suggestions: "subject:"modélisation duu envisage"" "subject:"modélisation dud envisage""
1 |
Prédire l'âge de personnes à partir de photos du visage : une étude fondée sur la caractérisation et l'analyse de signes du vieillissementNkengne, Alex A. 13 June 2008 (has links) (PDF)
L'âge a de tout temps constitué un attribut identitaire important. Nous avons développé au fil de l'évolution une aptitude innée à classer les individus en fonction de leur âge. Cette classification s'appuie en grande partie sur le visage et sur les transformations anatomiques qu'il subit au cours du temps. De plus en plus de traitements cosmétiques, dermatologiques et d'interventions chirurgicales s'attaquant à un signe ou un groupe de signes spécifiques du vieillissement sont mis en oeuvre pour annuler, ou tout au moins masquer partiellement l'effet du temps sur le visage. On peut dès lors s'interroger sur l'influence de chacun des signes sur notre capacité à prédire l'âge d'un individu en observant son visage. Afin de construire un algorithme capable de déterminer l'âge d'individus à partir de leurs photos, nous nous sommes intéressés aux signes du vieillissement et à leur impact sur l'âge apparent. Dans un premier temps, nous avons déterminé et analysé les transformations anatomiques qui altèrent le visage à partir de l'âge adulte (au-delà de 20 ans). Puis nous avons étudié les signes sur lequel on se base pour prédire l'âge d'une personne. Enfin, nous avons construit et validé un modèle prédictif de l'âge en s'appuyant sur les observations précédentes. Transformations anatomiques du visage avec l'âge : La prévalence d'un certain nombre de signes de vieillissement (rides, tâches brunes, forme du visage...) a été mesurée sur un panel représentatif de femmes volontaires âgées de 20 à 74 ans. Ces données ont permis d'établir la cinétique d'apparition de ces signes. Appréciation subjective de l'âge: Il s'agissait de déterminer les signes sur lesquels un observateur s'appuie lorsqu'il évalue l'âge d'un sujet. Pour ce faire, nous avons demandé à un panel constitué de 48 observateurs d'attribuer un âge aux volontaires sur lesquelles nous avions précédemment mesuré les signes du vieillissement. Nous avons confirmé avec ce groupe d'observateurs que la perception de l'âge est liée au sexe et à l'âge de l'observateur. De plus, à l'aide d'une régression PLS (Partial Least Square régression), nous avons établi des relations entre les signes du vieillissement et l'âge observé et démontré que selon que l'on soit jeune ou âgé, un homme ou une femme, on n'exploite pas les mêmes signes de vieillissement pour prédire l'âge.Modèle de prédiction : Enfin, nous avons proposé un modèle s'appuyant sur la régression PLS pour prédire automatiquement l'âge à partir des photos du visage. Ce modèle présente la particularité d'associer, dans une approche unifiée, les signes relatifs à la couleur, à la forme et à la texture du visage, à l'âge des sujets. A l'instar des Modèles Actifs D'apparence (AAM), le modèle construit vise à réduire fortement l'information portée par l'ensemble des pixels du visage. Toutefois, ce dernier est supervisé : Il est donc très approprié dans notre contexte puisque que l'on peut mettre en oeuvre une procédure d'apprentissage pilotée par le but. Les performances sont de fait comparables à celles des humains.
|
2 |
Multi-Object modelling of the face / Modélisation Multi-Objet du visageSalam, Hanan 20 December 2013 (has links)
Cette thèse traite la problématique liée à la modélisation du visage dans le but de l’analyse faciale.Dans la première partie de cette thèse, nous avons proposé le Modèle Actif d’Apparence Multi-Objet. La spécificité du modèle proposé est que les différentes parties du visage sont traités comme des objets distincts et les mouvements oculaires (du regard et clignotement) sont extrinsèquement paramétrées.La deuxième partie de la thèse porte sur l'utilisation de la modélisation de visage dans le contexte de la reconnaissance des émotions.Premièrement, nous avons proposé un système de reconnaissance des expressions faciales sous la forme d’Action Units. Notre contribution porte principalement sur l'extraction des descripteurs de visage. Pour cela nous avons utilisé les modèles AAM locaux.Le second système concerne la reconnaissance multimodale des quatre dimensions affectives :. Nous avons proposé un système qui fusionne des caractéristiques audio, contextuelles et visuelles pour donner en sortie les quatre dimensions émotionnelles. Nous contribuons à ce système en trouvant une localisation précise des traits du visage. En conséquence, nous proposons l’AAM Multi-Modèle. Ce modèle combine un modèle global extrinsèque du visage et un modèle local de la bouche. / The work in this thesis deals with the problematic of face modeling for the purpose of facial analysis.In the first part of this thesis, we proposed the Multi-Object Facial Actions Active Appearance Model (AAM). The specificity of the proposed model is that different parts of the face are treated as separate objects and eye movements (gaze and blink) are extrinsically parameterized. This increases the generalization capabilities of classical AAM.The second part of the thesis concerns the use of face modeling in the context of expression and emotion recognition. First we have proposed a system for the recognition of facial expressions in the form of Action Units (AU). Our contribution concerned mainly the extraction of AAM features of which we have opted for the use of local models.The second system concerns multi-modal recognition of four continuously valued affective dimensions. We have proposed a system that fuses audio, context and visual features and gives as output the four emotional dimensions. We contribute to the system by finding the precise localization of the facial features. Accordingly, we propose the Multi-Local AAM. This model combines extrinsically a global model of the face and a local one of the mouth through the computation of projection errors on the same global AAM.
|
3 |
Modélisation Multi-Objet du visageSalam, Hanan 20 December 2013 (has links) (PDF)
Cette thèse traite la problématique liée à la modélisation du visage dans le but de l'analyse faciale. Dans la première partie de cette thèse, nous avons proposé le Modèle Actif d'Apparence Multi-Objet. La spécificité du modèle proposé est que les différentes parties du visage sont traités comme des objets distincts et les mouvements oculaires (du regard et clignotement) sont extrinsèquement paramétrées. La deuxième partie de la thèse porte sur l'utilisation de la modélisation de visage dans le contexte de la reconnaissance des émotions. Premièrement, nous avons proposé un système de reconnaissance des expressions faciales sous la forme d'Action Units. Notre contribution porte principalement sur l'extraction des descripteurs de visage. Pour cela nous avons utilisé les modèles AAM locaux. Le second système concerne la reconnaissance multimodale des quatre dimensions affectives :. Nous avons proposé un système qui fusionne des caractéristiques audio, contextuelles et visuelles pour donner en sortie les quatre dimensions émotionnelles. Nous contribuons à ce système en trouvant une localisation précise des traits du visage. En conséquence, nous proposons l'AAM Multi-Modèle. Ce modèle combine un modèle global extrinsèque du visage et un modèle local de la bouche.
|
Page generated in 0.1131 seconds