• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analyse et détection des émotions verbales dans les interactions orales

Vidrascu, Laurence 20 December 2007 (has links) (PDF)
La thèse traite de l'analyse et la classification des états émotionnels perçus dans la parole lors de conversations naturelles. La majorité des expériences ont été effectuées sur des données enregistrées dans un centre d'appel médical contenant 20h de conversation homme-homme. La première partie du travail a consisté à proposer un protocole d'annotation adapté à la complexité des données réelles avec en particulier la possibilité d'annoter deux états émotionnels par segment. Des réflexions ont été conduites sur la manière de valider ces annotations et un vecteur " émotion " a été déduit de chaque annotation. Ces vecteurs ont révélé la présence d'états émotionnels mélangés qui ont été analysés et validés par des tests perceptifs. La deuxième partie porte sur la mise en oeuvre d'algorithmes de classification pour détecter des états émotionnels après l'extraction de plus d'une centaine d'indices paralinguistiques par segment. Les segments non complexes du corpus ont été utilisés pour entraîner des classifieurs, principalement des Support Vector Machine (SVM), afin de discriminer 2 à 5 classes " Emotion ". Les performances ont également été comparées selon le type d'indices extraits et en prenant en considération le sexe ou le rôle (agent/client) du locuteur. Une collaboration a été effectuée avec d'autres sites du réseau d'excellence HUMAINE afin de comparer les indices et méthodes sur des données en allemand. Les performances du LIMSI étaient au niveau de l'état de l'art. Enfin, une comparaison entre les états émotionnels présents dans des données actées et naturelles a montré que les modèles entraînés sur un type de données ne fonctionnaient pas forcément sur l'autre.
2

Multi-Object modelling of the face / Modélisation Multi-Objet du visage

Salam, Hanan 20 December 2013 (has links)
Cette thèse traite la problématique liée à la modélisation du visage dans le but de l’analyse faciale.Dans la première partie de cette thèse, nous avons proposé le Modèle Actif d’Apparence Multi-Objet. La spécificité du modèle proposé est que les différentes parties du visage sont traités comme des objets distincts et les mouvements oculaires (du regard et clignotement) sont extrinsèquement paramétrées.La deuxième partie de la thèse porte sur l'utilisation de la modélisation de visage dans le contexte de la reconnaissance des émotions.Premièrement, nous avons proposé un système de reconnaissance des expressions faciales sous la forme d’Action Units. Notre contribution porte principalement sur l'extraction des descripteurs de visage. Pour cela nous avons utilisé les modèles AAM locaux.Le second système concerne la reconnaissance multimodale des quatre dimensions affectives :. Nous avons proposé un système qui fusionne des caractéristiques audio, contextuelles et visuelles pour donner en sortie les quatre dimensions émotionnelles. Nous contribuons à ce système en trouvant une localisation précise des traits du visage. En conséquence, nous proposons l’AAM Multi-Modèle. Ce modèle combine un modèle global extrinsèque du visage et un modèle local de la bouche. / The work in this thesis deals with the problematic of face modeling for the purpose of facial analysis.In the first part of this thesis, we proposed the Multi-Object Facial Actions Active Appearance Model (AAM). The specificity of the proposed model is that different parts of the face are treated as separate objects and eye movements (gaze and blink) are extrinsically parameterized. This increases the generalization capabilities of classical AAM.The second part of the thesis concerns the use of face modeling in the context of expression and emotion recognition. First we have proposed a system for the recognition of facial expressions in the form of Action Units (AU). Our contribution concerned mainly the extraction of AAM features of which we have opted for the use of local models.The second system concerns multi-modal recognition of four continuously valued affective dimensions. We have proposed a system that fuses audio, context and visual features and gives as output the four emotional dimensions. We contribute to the system by finding the precise localization of the facial features. Accordingly, we propose the Multi-Local AAM. This model combines extrinsically a global model of the face and a local one of the mouth through the computation of projection errors on the same global AAM.
3

Modélisation des émotions de l’apprenant et interventions implicites pour les systèmes tutoriels intelligents

Jraidi, Imène 08 1900 (has links)
La modélisation de l’expérience de l’utilisateur dans les Interactions Homme-Machine est un enjeu important pour la conception et le développement des systèmes adaptatifs intelligents. Dans ce contexte, une attention particulière est portée sur les réactions émotionnelles de l’utilisateur, car elles ont une influence capitale sur ses aptitudes cognitives, comme la perception et la prise de décision. La modélisation des émotions est particulièrement pertinente pour les Systèmes Tutoriels Émotionnellement Intelligents (STEI). Ces systèmes cherchent à identifier les émotions de l’apprenant lors des sessions d’apprentissage, et à optimiser son expérience d’interaction en recourant à diverses stratégies d’interventions. Cette thèse vise à améliorer les méthodes de modélisation des émotions et les stratégies émotionnelles utilisées actuellement par les STEI pour agir sur les émotions de l’apprenant. Plus précisément, notre premier objectif a été de proposer une nouvelle méthode pour détecter l’état émotionnel de l’apprenant, en utilisant différentes sources d’informations qui permettent de mesurer les émotions de façon précise, tout en tenant compte des variables individuelles qui peuvent avoir un impact sur la manifestation des émotions. Pour ce faire, nous avons développé une approche multimodale combinant plusieurs mesures physiologiques (activité cérébrale, réactions galvaniques et rythme cardiaque) avec des variables individuelles, pour détecter une émotion très fréquemment observée lors des sessions d’apprentissage, à savoir l’incertitude. Dans un premier lieu, nous avons identifié les indicateurs physiologiques clés qui sont associés à cet état, ainsi que les caractéristiques individuelles qui contribuent à sa manifestation. Puis, nous avons développé des modèles prédictifs permettant de détecter automatiquement cet état à partir des différentes variables analysées, à travers l’entrainement d’algorithmes d’apprentissage machine. Notre deuxième objectif a été de proposer une approche unifiée pour reconnaître simultanément une combinaison de plusieurs émotions, et évaluer explicitement l’impact de ces émotions sur l’expérience d’interaction de l’apprenant. Pour cela, nous avons développé une plateforme hiérarchique, probabiliste et dynamique permettant de suivre les changements émotionnels de l'apprenant au fil du temps, et d’inférer automatiquement la tendance générale qui caractérise son expérience d’interaction à savoir : l’immersion, le blocage ou le décrochage. L’immersion correspond à une expérience optimale : un état dans lequel l'apprenant est complètement concentré et impliqué dans l’activité d’apprentissage. L’état de blocage correspond à une tendance d’interaction non optimale où l'apprenant a de la difficulté à se concentrer. Finalement, le décrochage correspond à un état extrêmement défavorable où l’apprenant n’est plus du tout impliqué dans l’activité d’apprentissage. La plateforme proposée intègre trois modalités de variables diagnostiques permettant d’évaluer l’expérience de l’apprenant à savoir : des variables physiologiques, des variables comportementales, et des mesures de performance, en combinaison avec des variables prédictives qui représentent le contexte courant de l’interaction et les caractéristiques personnelles de l'apprenant. Une étude a été réalisée pour valider notre approche à travers un protocole expérimental permettant de provoquer délibérément les trois tendances ciblées durant l’interaction des apprenants avec différents environnements d’apprentissage. Enfin, notre troisième objectif a été de proposer de nouvelles stratégies pour influencer positivement l’état émotionnel de l’apprenant, sans interrompre la dynamique de la session d’apprentissage. Nous avons à cette fin introduit le concept de stratégies émotionnelles implicites : une nouvelle approche pour agir subtilement sur les émotions de l’apprenant, dans le but d’améliorer son expérience d’apprentissage. Ces stratégies utilisent la perception subliminale, et plus précisément une technique connue sous le nom d’amorçage affectif. Cette technique permet de solliciter inconsciemment les émotions de l’apprenant, à travers la projection d’amorces comportant certaines connotations affectives. Nous avons mis en œuvre une stratégie émotionnelle implicite utilisant une forme particulière d’amorçage affectif à savoir : le conditionnement évaluatif, qui est destiné à améliorer de façon inconsciente l’estime de soi. Une étude expérimentale a été réalisée afin d’évaluer l’impact de cette stratégie sur les réactions émotionnelles et les performances des apprenants. / Modeling the user’s experience within Human-Computer Interaction is an important challenge for the design and development of intelligent adaptive systems. In this context, a particular attention is given to the user’s emotional reactions, as they decisively influence his cognitive abilities, such as perception and decision-making. Emotion modeling is particularly relevant for Emotionally Intelligent Tutoring Systems (EITS). These systems seek to identify the learner’s emotions during tutoring sessions, and to optimize his interaction experience using a variety of intervention strategies. This thesis aims to improve current methods on emotion modeling, as well as the emotional strategies that are presently used within EITS to influence the learner’s emotions. More precisely, our first objective was to propose a new method to recognize the learner’s emotional state, using different sources of information that allow to measure emotions accurately, whilst taking account of individual characteristics that can have an impact on the manifestation of emotions. To that end, we have developed a multimodal approach combining several physiological measures (brain activity, galvanic responses and heart rate) with individual variables, to detect a specific emotion, which is frequently observed within computer tutoring, namely : uncertainty. First, we have identified the key physiological indicators that are associated to this state, and the individual characteristics that contribute to its manifestation. Then, we have developed predictive models to automatically detect this state from the analyzed variables, trough machine learning algorithm training. Our second objective was to propose a unified approach to simultaneously recognize a combination of several emotions, and to explicitly evaluate the impact of these emotions on the learner’s interaction experience. For this purpose, we have developed a hierarchical, probabilistic and dynamic framework, which allows one to track the learner’s emotional changes over time, and to automatically infer the trend that characterizes his interaction experience namely : flow, stuck or off-task. Flow is an optimal experience : a state in which the learner is completely focused and involved within the learning activity. The state of stuck is a non-optimal trend of the interaction where the learner has difficulty to maintain focused attention. Finally, the off-task behavior is an extremely unfavorable state where the learner is not involved anymore within the learning session. The proposed framework integrates three-modality diagnostic variables that sense the learner’s experience including : physiology, behavior and performance, in conjunction with predictive variables that represent the current context of the interaction and the learner’s personal characteristics. A human-subject study was conducted to validate our approach through an experimental protocol designed to deliberately elicit the three targeted trends during the learners’ interaction with different learning environments. Finally, our third objective was to propose new strategies to positively influence the learner’s emotional state, without interrupting the dynamics of the learning session. To this end, we have introduced the concept of implicit emotional strategies : a novel approach to subtly impact the learner’s emotions, in order to improve his learning experience. These strategies use the subliminal perception, and more precisely a technique known as affective priming. This technique aims to unconsciously solicit the learner’s emotions, through the projection of primes charged with specific affective connotations. We have implemented an implicit emotional strategy using a particular form of affective priming namely : the evaluative conditioning, which is designed to unconsciously enhance self-esteem. An experimental study was conducted in order to evaluate the impact of this strategy on the learners’ emotional reactions and performance.
4

Modélisation des émotions de l’apprenant et interventions implicites pour les systèmes tutoriels intelligents

Jraidi, Imène 08 1900 (has links)
La modélisation de l’expérience de l’utilisateur dans les Interactions Homme-Machine est un enjeu important pour la conception et le développement des systèmes adaptatifs intelligents. Dans ce contexte, une attention particulière est portée sur les réactions émotionnelles de l’utilisateur, car elles ont une influence capitale sur ses aptitudes cognitives, comme la perception et la prise de décision. La modélisation des émotions est particulièrement pertinente pour les Systèmes Tutoriels Émotionnellement Intelligents (STEI). Ces systèmes cherchent à identifier les émotions de l’apprenant lors des sessions d’apprentissage, et à optimiser son expérience d’interaction en recourant à diverses stratégies d’interventions. Cette thèse vise à améliorer les méthodes de modélisation des émotions et les stratégies émotionnelles utilisées actuellement par les STEI pour agir sur les émotions de l’apprenant. Plus précisément, notre premier objectif a été de proposer une nouvelle méthode pour détecter l’état émotionnel de l’apprenant, en utilisant différentes sources d’informations qui permettent de mesurer les émotions de façon précise, tout en tenant compte des variables individuelles qui peuvent avoir un impact sur la manifestation des émotions. Pour ce faire, nous avons développé une approche multimodale combinant plusieurs mesures physiologiques (activité cérébrale, réactions galvaniques et rythme cardiaque) avec des variables individuelles, pour détecter une émotion très fréquemment observée lors des sessions d’apprentissage, à savoir l’incertitude. Dans un premier lieu, nous avons identifié les indicateurs physiologiques clés qui sont associés à cet état, ainsi que les caractéristiques individuelles qui contribuent à sa manifestation. Puis, nous avons développé des modèles prédictifs permettant de détecter automatiquement cet état à partir des différentes variables analysées, à travers l’entrainement d’algorithmes d’apprentissage machine. Notre deuxième objectif a été de proposer une approche unifiée pour reconnaître simultanément une combinaison de plusieurs émotions, et évaluer explicitement l’impact de ces émotions sur l’expérience d’interaction de l’apprenant. Pour cela, nous avons développé une plateforme hiérarchique, probabiliste et dynamique permettant de suivre les changements émotionnels de l'apprenant au fil du temps, et d’inférer automatiquement la tendance générale qui caractérise son expérience d’interaction à savoir : l’immersion, le blocage ou le décrochage. L’immersion correspond à une expérience optimale : un état dans lequel l'apprenant est complètement concentré et impliqué dans l’activité d’apprentissage. L’état de blocage correspond à une tendance d’interaction non optimale où l'apprenant a de la difficulté à se concentrer. Finalement, le décrochage correspond à un état extrêmement défavorable où l’apprenant n’est plus du tout impliqué dans l’activité d’apprentissage. La plateforme proposée intègre trois modalités de variables diagnostiques permettant d’évaluer l’expérience de l’apprenant à savoir : des variables physiologiques, des variables comportementales, et des mesures de performance, en combinaison avec des variables prédictives qui représentent le contexte courant de l’interaction et les caractéristiques personnelles de l'apprenant. Une étude a été réalisée pour valider notre approche à travers un protocole expérimental permettant de provoquer délibérément les trois tendances ciblées durant l’interaction des apprenants avec différents environnements d’apprentissage. Enfin, notre troisième objectif a été de proposer de nouvelles stratégies pour influencer positivement l’état émotionnel de l’apprenant, sans interrompre la dynamique de la session d’apprentissage. Nous avons à cette fin introduit le concept de stratégies émotionnelles implicites : une nouvelle approche pour agir subtilement sur les émotions de l’apprenant, dans le but d’améliorer son expérience d’apprentissage. Ces stratégies utilisent la perception subliminale, et plus précisément une technique connue sous le nom d’amorçage affectif. Cette technique permet de solliciter inconsciemment les émotions de l’apprenant, à travers la projection d’amorces comportant certaines connotations affectives. Nous avons mis en œuvre une stratégie émotionnelle implicite utilisant une forme particulière d’amorçage affectif à savoir : le conditionnement évaluatif, qui est destiné à améliorer de façon inconsciente l’estime de soi. Une étude expérimentale a été réalisée afin d’évaluer l’impact de cette stratégie sur les réactions émotionnelles et les performances des apprenants. / Modeling the user’s experience within Human-Computer Interaction is an important challenge for the design and development of intelligent adaptive systems. In this context, a particular attention is given to the user’s emotional reactions, as they decisively influence his cognitive abilities, such as perception and decision-making. Emotion modeling is particularly relevant for Emotionally Intelligent Tutoring Systems (EITS). These systems seek to identify the learner’s emotions during tutoring sessions, and to optimize his interaction experience using a variety of intervention strategies. This thesis aims to improve current methods on emotion modeling, as well as the emotional strategies that are presently used within EITS to influence the learner’s emotions. More precisely, our first objective was to propose a new method to recognize the learner’s emotional state, using different sources of information that allow to measure emotions accurately, whilst taking account of individual characteristics that can have an impact on the manifestation of emotions. To that end, we have developed a multimodal approach combining several physiological measures (brain activity, galvanic responses and heart rate) with individual variables, to detect a specific emotion, which is frequently observed within computer tutoring, namely : uncertainty. First, we have identified the key physiological indicators that are associated to this state, and the individual characteristics that contribute to its manifestation. Then, we have developed predictive models to automatically detect this state from the analyzed variables, trough machine learning algorithm training. Our second objective was to propose a unified approach to simultaneously recognize a combination of several emotions, and to explicitly evaluate the impact of these emotions on the learner’s interaction experience. For this purpose, we have developed a hierarchical, probabilistic and dynamic framework, which allows one to track the learner’s emotional changes over time, and to automatically infer the trend that characterizes his interaction experience namely : flow, stuck or off-task. Flow is an optimal experience : a state in which the learner is completely focused and involved within the learning activity. The state of stuck is a non-optimal trend of the interaction where the learner has difficulty to maintain focused attention. Finally, the off-task behavior is an extremely unfavorable state where the learner is not involved anymore within the learning session. The proposed framework integrates three-modality diagnostic variables that sense the learner’s experience including : physiology, behavior and performance, in conjunction with predictive variables that represent the current context of the interaction and the learner’s personal characteristics. A human-subject study was conducted to validate our approach through an experimental protocol designed to deliberately elicit the three targeted trends during the learners’ interaction with different learning environments. Finally, our third objective was to propose new strategies to positively influence the learner’s emotional state, without interrupting the dynamics of the learning session. To this end, we have introduced the concept of implicit emotional strategies : a novel approach to subtly impact the learner’s emotions, in order to improve his learning experience. These strategies use the subliminal perception, and more precisely a technique known as affective priming. This technique aims to unconsciously solicit the learner’s emotions, through the projection of primes charged with specific affective connotations. We have implemented an implicit emotional strategy using a particular form of affective priming namely : the evaluative conditioning, which is designed to unconsciously enhance self-esteem. An experimental study was conducted in order to evaluate the impact of this strategy on the learners’ emotional reactions and performance.
5

Modélisation Multi-Objet du visage

Salam, Hanan 20 December 2013 (has links) (PDF)
Cette thèse traite la problématique liée à la modélisation du visage dans le but de l'analyse faciale. Dans la première partie de cette thèse, nous avons proposé le Modèle Actif d'Apparence Multi-Objet. La spécificité du modèle proposé est que les différentes parties du visage sont traités comme des objets distincts et les mouvements oculaires (du regard et clignotement) sont extrinsèquement paramétrées. La deuxième partie de la thèse porte sur l'utilisation de la modélisation de visage dans le contexte de la reconnaissance des émotions. Premièrement, nous avons proposé un système de reconnaissance des expressions faciales sous la forme d'Action Units. Notre contribution porte principalement sur l'extraction des descripteurs de visage. Pour cela nous avons utilisé les modèles AAM locaux. Le second système concerne la reconnaissance multimodale des quatre dimensions affectives :. Nous avons proposé un système qui fusionne des caractéristiques audio, contextuelles et visuelles pour donner en sortie les quatre dimensions émotionnelles. Nous contribuons à ce système en trouvant une localisation précise des traits du visage. En conséquence, nous proposons l'AAM Multi-Modèle. Ce modèle combine un modèle global extrinsèque du visage et un modèle local de la bouche.

Page generated in 0.1386 seconds