Spelling suggestions: "subject:"modelagem submaximal"" "subject:"odelagem submaximal""
1 |
Métodos submalhas não lineares para o problema de convecção-difusão-reação / Nonlinear subgrid methods for convection-difusion-reaction problemIsaac Pinheiro dos Santos 29 October 2007 (has links)
Este trabalho apresenta uma metodologia geral para aproximar equações de convecção-difusão-reação baseada no princípio de separação de escalas. Utiliza-se uma decomposição de dois níveis dos espaços de aproximação e o problema local é modificado, introduzindo-se uma difusão artificial que atua somente nas escalas submalhas. O aspecto chave do método é o controle local dado a partir da decomposição do campo de velocidades em escalas resolvidas e não resolvidas com o requerimento da satisfação do modelo discreto a nível do elemento para uma energia cinética mínima associada às escalas não resolvidas. Este procedimento conduz à um modelo submalha não linear que não depende da escolha/ajuste de nenhum parâmetro de estabilização. Ele pode ser considerado um método auto-adaptativo, de forma que a quantidade de viscosidade submalha é automaticamente introduzida de acordo com o resíduo das escalas resolvidas a nível do elemento. É apresentada uma estimativa de erro a priori com taxas de convergência equivalentes às obtidas para sua contrapartida linear e vários métodos estabilizados. Experimentos numéricos demonstram a habilidade do método desenvolvido em representar problemas predominantemente convectivos e predominantemente reativos. / This work presents a general framework for approximating convection-diffusion-reaction equations based on principles of scale separation. A two-level decomposition of the discrete approximation spaces is performed and the local problem is modified introducing an artificial viscosity acting only on the subgrid scales. The key feature is the local control coming from the decomposition of the velocity field into the resolved and unresolved scales and requiring the satisfaction of the discrete model problem at the element level for a minimum kinetic energy associated to the unresolved scales. This procedure leads to a nonlinear subgrid model that acts only on the unresolved scales but does not require any tuned-up parameter. It can be considered a self adaptive method such that the amount of the subgrid viscosity is automatically introduced according to the
residual of the resolved scale at element level. We provide an a priori error estimate with convergence rates similar to its linear counterpart and some other stabilized methods, like SUPG. Numerical experiments demonstrate the ability of the method to represent convection and/or reaction dominated problems.
|
2 |
Métodos submalhas não lineares para o problema de convecção-difusão-reação / Nonlinear subgrid methods for convection-difusion-reaction problemSantos, Isaac Pinheiro dos 29 October 2007 (has links)
Made available in DSpace on 2015-03-04T18:50:58Z (GMT). No. of bitstreams: 1
thesis-isaac2.pdf: 3114497 bytes, checksum: fb2f0d170ae7c4b8f5f3b0b6a3c509b8 (MD5)
Previous issue date: 2007-10-29 / Conselho Nacional de Desenvolvimento Cientifico e Tecnologico / This work presents a general framework for approximating convection-diffusion-reaction equations based on principles of scale separation. A two-level decomposition of the discrete approximation spaces is performed and the local problem is modified introducing an artificial viscosity acting only on the subgrid scales. The key feature is the local control coming from the decomposition of the velocity field into the resolved and unresolved scales and requiring the satisfaction of the discrete model problem at the element level for a minimum kinetic energy associated to the unresolved scales. This procedure leads to a nonlinear subgrid model that acts only on the unresolved scales but does not require any tuned-up parameter. It can be considered a self adaptive method such that the amount of the subgrid viscosity is automatically introduced according to the
residual of the resolved scale at element level. We provide an a priori error estimate with convergence rates similar to its linear counterpart and some other stabilized methods, like SUPG. Numerical experiments demonstrate the ability of the method to represent convection and/or reaction dominated problems. / Este trabalho apresenta uma metodologia geral para aproximar equações de convecção-difusão-reação baseada no princípio de separação de escalas. Utiliza-se uma decomposição de dois níveis dos espaços de aproximação e o problema local é modificado, introduzindo-se uma difusão artificial que atua somente nas escalas submalhas. O aspecto chave do método é o controle local dado a partir da decomposição do campo de velocidades em escalas resolvidas e não resolvidas com o requerimento da satisfação do modelo discreto a nível do elemento para uma energia cinética mínima associada às escalas não resolvidas. Este procedimento conduz à um modelo submalha não linear que não depende da escolha/ajuste de nenhum parâmetro de estabilização. Ele pode ser considerado um método auto-adaptativo, de forma que a quantidade de viscosidade submalha é automaticamente introduzida de acordo com o resíduo das escalas resolvidas a nível do elemento. É apresentada uma estimativa de erro a priori com taxas de convergência equivalentes às obtidas para sua contrapartida linear e vários métodos estabilizados. Experimentos numéricos demonstram a habilidade do método desenvolvido em representar problemas predominantemente convectivos e predominantemente reativos.
|
3 |
Um código LES de alta ordem para simulação de escoamentos turbulentos com desenvolvimento espacial / A high-order LES code for spatially developing turbulent flow simulationsPatrícia Sartori 05 August 2016 (has links)
A metodologia LES (Large Eddy Simulation) é uma alternativa viável para a solução numérica de escoamentos de interesse prático em virtude da limitação computacional imposta pela resolução direta de todas as escalas presentes em escoamentos turbulentos. Entretanto, a compreensão detalhada do fenômeno da turbulência é ainda uma tarefa desafiadora em consequência do seu comportamento não linear e alta sensibilidade às condições iniciais e de contorno. Dessa forma, o sucesso de simulações LES está associado à utilização de um código computacional eficiente, com modelagem submalha que represente corretamente a dinâmica do escoamento, juntamente com a especificação de condições iniciais turbulentas fisicamente consistentes. Nesse contexto, o presente trabalho tem como objetivo o desenvolvimento de um código LES de alta ordem aliado a um método de geração de perturbações para o estudo de escoamentos turbulentos em camada limite sobre superfície plana. Foi adotada a formulação vorticidadevelocidade. A metodologia numérica baseia-se no método de diferenças finitas em malhas colocalizadas, onde as derivadas nas direções longitudinal e normal ao escoamento são aproximadas usando diferenças compactas de alta ordem. Esse estudo assume periodicidade na direção transversal do escoamento e então um método espectral é adotado nessa direção. A integração temporal é feita através do método Runge-Kutta de 4a ordem e a solução da equação de Poisson se dá por meio de um método multigrid. Para a modelagem submalha é adotado o modelo WALE (Wall-Adapting Local Eddy-viscosity). O método RFG (Random Flow Generation) foi responsável pela geração das flutuações de velocidade. Os resultados obtidos mostraram-se em boa concordância com os dados DNS (Direct Numerical Simulation) e LES presentes na literatura. / LES methodology is a viable alternative for the numerical solution of practical interest flows due to the computational limitations imposed by the direct resolution of all scales presented in turbulent flow. However, the detailed understanding of the turbulence phenomenon is still a challenging task as a result of its non-linear behavior and high sensitivity to initial and boundary conditions. Thus, the success of LES simulations is associated with the use of an efficient computational code, wherein the subgrid scale modeling accurately represents the flow dynamics, together with the specification of realistic inicial boundary conditions. In this context, this study aims to develop a high-order LES code combined with a method for generating velocity fluctuations to compute turbulent boundary layer flows over a flat plate. The vorticity-velocity formulation was adopted. The numerical scheme is based on the finite difference method in collocated grid, where the derivatives in the streamwise and wall-normal are approximated using high order compact finite difference schemes. We also assume periodicity in spanwise direction therefore it is adopted a spectral method in this direction. The method chosen for the temporal evolution is the 4th order Runge-Kutta method and the solution of Poisson equation solution is accessed via a multigrid algorithm. For subgrid modelling it is adopted the Wall-Adapting Local Eddy-viscosity (WALE) model. The RFG (Random Flow Generation) method was responsible for the generation of unsteady turbulent velocity signal. The results obtained were in good agreement with DNS (Direct Numerical Simulation) and LES from the literature.
|
4 |
Um código LES de alta ordem para simulação de escoamentos turbulentos com desenvolvimento espacial / A high-order LES code for spatially developing turbulent flow simulationsSartori, Patrícia 05 August 2016 (has links)
A metodologia LES (Large Eddy Simulation) é uma alternativa viável para a solução numérica de escoamentos de interesse prático em virtude da limitação computacional imposta pela resolução direta de todas as escalas presentes em escoamentos turbulentos. Entretanto, a compreensão detalhada do fenômeno da turbulência é ainda uma tarefa desafiadora em consequência do seu comportamento não linear e alta sensibilidade às condições iniciais e de contorno. Dessa forma, o sucesso de simulações LES está associado à utilização de um código computacional eficiente, com modelagem submalha que represente corretamente a dinâmica do escoamento, juntamente com a especificação de condições iniciais turbulentas fisicamente consistentes. Nesse contexto, o presente trabalho tem como objetivo o desenvolvimento de um código LES de alta ordem aliado a um método de geração de perturbações para o estudo de escoamentos turbulentos em camada limite sobre superfície plana. Foi adotada a formulação vorticidadevelocidade. A metodologia numérica baseia-se no método de diferenças finitas em malhas colocalizadas, onde as derivadas nas direções longitudinal e normal ao escoamento são aproximadas usando diferenças compactas de alta ordem. Esse estudo assume periodicidade na direção transversal do escoamento e então um método espectral é adotado nessa direção. A integração temporal é feita através do método Runge-Kutta de 4a ordem e a solução da equação de Poisson se dá por meio de um método multigrid. Para a modelagem submalha é adotado o modelo WALE (Wall-Adapting Local Eddy-viscosity). O método RFG (Random Flow Generation) foi responsável pela geração das flutuações de velocidade. Os resultados obtidos mostraram-se em boa concordância com os dados DNS (Direct Numerical Simulation) e LES presentes na literatura. / LES methodology is a viable alternative for the numerical solution of practical interest flows due to the computational limitations imposed by the direct resolution of all scales presented in turbulent flow. However, the detailed understanding of the turbulence phenomenon is still a challenging task as a result of its non-linear behavior and high sensitivity to initial and boundary conditions. Thus, the success of LES simulations is associated with the use of an efficient computational code, wherein the subgrid scale modeling accurately represents the flow dynamics, together with the specification of realistic inicial boundary conditions. In this context, this study aims to develop a high-order LES code combined with a method for generating velocity fluctuations to compute turbulent boundary layer flows over a flat plate. The vorticity-velocity formulation was adopted. The numerical scheme is based on the finite difference method in collocated grid, where the derivatives in the streamwise and wall-normal are approximated using high order compact finite difference schemes. We also assume periodicity in spanwise direction therefore it is adopted a spectral method in this direction. The method chosen for the temporal evolution is the 4th order Runge-Kutta method and the solution of Poisson equation solution is accessed via a multigrid algorithm. For subgrid modelling it is adopted the Wall-Adapting Local Eddy-viscosity (WALE) model. The RFG (Random Flow Generation) method was responsible for the generation of unsteady turbulent velocity signal. The results obtained were in good agreement with DNS (Direct Numerical Simulation) and LES from the literature.
|
Page generated in 0.0642 seconds