• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modélisation multi-échelle et analyse expérimentale du comportement de composites à matrice thermoplastique renforcés fibres de verre sous sollicitations dynamiques modérées / Multiscale model and experimental characterization of glass fiber reinforced thermoplastic composite under dynamic loading

Achour, Nadia 22 December 2017 (has links)
Le présent travail de thèse a pour objectif de développer un outil de modélisation par transition d’échelles sous forme de machine d’essais virtuels. Celle-ci, utilisée conjointement aux codes de calculs de structures, permet de déterminer le comportement anisotrope complexe de composites à matrice polypropylène chargés en fibres de verre courtes sous sollicitations dynamiques. La microstructure en cœur-peau induite par le procédé d’injection du matériau est investiguée expérimentalement par μCT. Le comportement dynamique est caractérisé pour des vitesses de déformation allant jusqu’à 200s-1 au moyen d’une une méthodologie expérimentale basée sur l’utilisation d’un joint d’amortissement et d’une optimisation des éprouvettes. Les mécanismes d’endommagement sont analysés expérimentalement par essai in situ. Ils mettent en évidence le phénomène d’endommagent prépondérant qui est la décohésion de l’interface fibre matrice. Basé sur ces résultats expérimentaux, l’approche multi échelles développée consiste en une méthode de Mori Tanaka incrémentale appliquée à une matrice élastoviscoplastique et des renforts enrobés intégrant l’évolution de l’endommagement à l’échelle mésoscopique. L’endommagement introduit dans les enrobages perturbe le transfert de charge entre la matrice et les renforts. De plus, la dépendance à la vitesse de déformation, aux orientations et aux taux de fibre du modèle sont corrélés par des essais. La machine d’essais virtuels est validée par modélisation de structures. L’outil prédictif ainsi développé prend en compte le minimum nécessaire à la description de la microstructure tout en étant fiable et pertinent dans la modélisation de composites sous sollicitations dynamiques modérées. / The current work focuses on the development of a micromechanical modeling tool in the form of a virtual test machine which, used with the structural calculation codes, allows to determine the complex anisotropic behavior of polypropylene matrix composites reinforced with short glass fibers under dynamic loading. The core-skin microstructure induced by the material injection process is investigated experimentally by μCT. The dynamic behavior is characterized for strain rates of up to 200s-1 using an experimental methodology based on the use of a damping joint and specimen optimization. The mechanisms of damage are analyzed experimentally by in situ SEM testing. They highlight the importance of the debonding phenomenon in the damage scenario. Based on these experimental results, the multiscale approach developed consists of an incremental Mori Tanaka method applied to an elastoviscoplastic matrix and coated reinforcements integrating the evolution of damage at the mesoscopic scale. The damage introduced into the coatings disturbs the load transfer between the matrix and the reinforcements. In addition, the strain rate, orientation, and fiber rate dependence of the model are correlated by testing. The virtual testing machine is validated by modeling structures. The developed predictive tool thus takes into account the minimum necessary to describe the microstructure while being reliable and relevant in the modeling of composites under moderate dynamic stress.
2

Finite element mesoscopic analysis of damage in microalloyed continuous casting steels at high temperature/Analyse mésoscopique par éléments finis de lendommagement à haute température des aciers microalliés de coulée continue

Castagne, Sylvie 12 February 2007 (has links)
This thesis addresses the problem of damage at elevated temperature with a view to analysing transverse cracking during the continuous casting of microalloyed steels. Based on the results of a previous project undertaken at the University of Liège to simulate the continuous casting process at the macroscopic level, the present research aims at studying the damage growth using a finite element mesoscopic approach that models the grains structure of the material. The developments are done at the mesoscopic scale using information from both the microscopic and macroscopic levels. In order to determine the constitutive laws governing the damage process at the mesoscopic scale, the physical mechanisms leading to the apparition of cracks during steel continuous casting are first investigated. It is acknowledged that in the studied temperature range (800 to 1200 °C), the austenitic grain boundary is a favourable place for cracks to initiate and propagate. The mechanisms of voids nucleation, growth and coalescence are established, the cavities evolving under diffusion and creep deformations. Having identified the damage mechanisms occurring under continuous casting conditions, a numerical approach for the modelling of these phenomena at the grain scale is proposed. The mesoscopic model, which is implemented in the Lagrangian finite element code LAGAMINE developed at the University of Liège, is built on the basis of a 2D mesoscopic cell representative of the material. The finite element discretization comprises solid elements inside the grains and interface elements on the grains boundaries. An elastic-viscous-plastic law of Norton-Hoff type, which represents the thermo-mechanical behaviour of the material, is associated to the solid elements for the modelling of the grains; and a damage law accounting for cavitation and sliding is linked to the interface elements for the modelling of the damage growth at the grains boundaries. The transfer between the macroscopic and mesoscopic scales is realised by imposing the stress, strain and temperature fields, collected during the parent macroscopic simulation, as boundary conditions on the mesosopic cell. Macroscopic experiments, analytical computations and finite element simulations, as well as literature review and microscopic analyses, are used to define the parameters of the material laws. The experimental results and the identification methodology leading to the definition of the set of parameters specific to the studied steel are described. Finally, the influence of oscillation marks and process defects on cracks formation during the industrial process of continuous casting is analysed. The results are compared with in-situ observations and cracking risk indicators computed by the macroscopic model.

Page generated in 0.1537 seconds