• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison of Machine Learning Models Used for Swedish Text Classification in Chat Messaging

Karim, Mezbahul, Amanzadi, Amirtaha January 2022 (has links)
The rise of social media and the use of mobile applications has led to increasing concerns regarding the content that is shared through these apps and whether they are being regulated or not. One of the problems that can arise due to a lack of regulation is that chat messages that are inappropriate or of profane nature can be allowed to be shared through these apps. Thus, it is vital to detect whenever these types of chat messages are shared through these mobile applications. In addition to that, there should also be detection of chat messages that can lead to the identity of the users being revealed as that is how the app in this thesis project was intended to be used. One of the most popular approaches to detect chat messages of this nature is to use machine learning techniques that can classify text. We were quick to discover that there were not many machine learning models that were built to classify short text messages in the Swedish language, thus the main problem of our thesis was the lack of evaluation and analysis of machine learning models for text classification in the context of the chat messages in Swedish. Thus, the purpose of our project was mainly to find the best performing models for text classification, implement these models and evaluate them to find the best among the ones we found. After the models were created, a hosting server, as well as an API, was required for the text classifying system to compute and communicate the prediction results to the mobile application in real-time. Therefore, the models were containerized and deployed as a REST API that serves requests upon arrival on a cloud server. The goal of this project was to help future work being done on text classification in the Swedish language by providing the results of this thesis to any parties that are interested in our line of work. From our own experience, we realized how challenging it can be to find and choose the best machine learning models when one has no previous data on which can be the best performing one. Thus, we believe that the results of this thesis project will greatly aid future projects in this area. The chosen research methodology was qualitative and dealt with quantitative data. The results we received showed that the BERT model was the best choice among the three models that we compared. With minute adjustments, this model should be more than capable of detecting the type of chat messages that it is required within the mobile application. / Uppkomsten av social media och användning av mobilapplikationer ledde till ökande oro om innehållet som är delad inom dessa appar och om dem är reglerad eller inte. Ett problem som uppstår på grund av bristande reglering kan vara att chatmeddelanden som är olämplig eller profan kan bli delad med dessa appar. Därför är det viktig att upptäcka när dessa typer av chatmeddelande är delad genom mobilapplikationer. Dessutom det måste finnas ett system som upptäcker chattmeddelanden som kan hjälpa att avslöja användarens identiteter, som den här appen i detta projekt avsedda att användas. En av mest populära sett att upptäcka den typen av chattmeddelanden är användning av mäskinlärning tekniker som kan klassificera text. Vi snart hittade att det finns inte så många mäskinlärning modeller som var byggt att klassificera texter på svenska, alltså huvudproblem med vår exam en var bistrande utvärdering och analys av mäskinlärning modeller för textklassificering i kontext av svenska språket. Så, syftet med vårt projekt var att hitta de bästa presenterande modeller för textklassifikation, genomföra dessa modeller själva och sedan utvärdera dem att hitta den bästa. Därtill, för att textklassificering ska beräkna och kommunicera den förutsägelseresultaten till mobila applikationer i realtid behövs en värdserver samt en API. Därför, modellerna containeriserades och distribuerad es som en REST API som betjänar begäran vid ankomst på en molnserver. Målet med det här projektet var att hjälpa framtidsarbete inom textklassifikation på svenska språket genom att tillhandahålla resultaten till partier som är intresserad i vår arbetslin je. Från vår egen erfarenhet, vi insåg att det var svårt att hitta och välja dem bästa mäskinlärning modeller, specifikt när man har inga data som tidigare visat den med bäst prestanda. Och därför vi anser att den resultaten av den har examen kommer att v ara stor hjälp till framtida projekt i det här området. Den valda forskningsmetodiken var kvalitativ och handlade om kvantitativ data. Resultaten visade att BERT modell var den bästa bland de tre modellerna som vi jämförde med. Med lite justeringen är mod ellen mer än kapable att detektera den typen av krävs inom mobilapplikationen.

Page generated in 0.1293 seconds