• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teoria quântica no espaço de fase : modelo de Hénon-Heiles e simetrias de calibre

Cruz Filho, José Silva da 17 August 2016 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Física, 2016. / Submitted by Fernanda Percia França (fernandafranca@bce.unb.br) on 2016-12-07T17:15:15Z No. of bitstreams: 1 2016_JoséSilvadaCruzFilho.pdf: 1399057 bytes, checksum: fbb9af5d2a34eb991f05876fa63a4b62 (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2016-12-19T15:09:07Z (GMT) No. of bitstreams: 1 2016_JoséSilvadaCruzFilho.pdf: 1399057 bytes, checksum: fbb9af5d2a34eb991f05876fa63a4b62 (MD5) / Made available in DSpace on 2016-12-19T15:09:07Z (GMT). No. of bitstreams: 1 2016_JoséSilvadaCruzFilho.pdf: 1399057 bytes, checksum: fbb9af5d2a34eb991f05876fa63a4b62 (MD5) / Neste trabalho, utilizamos uma representação da mecânica quântica simplética para estudar teorias de calibre abeliano e não abeliano, bem como soluções da equação de Schrödinger para sistemas caóticos no espaço de fase. No âmbito arcabouço das teorias de calibre, utilizamos as quasi-amplitudes de probabilidade no espaço de fase na análise de transformações do tipo ψ(q,p)→e^(-i˄(q,p) )*ψ(q,p) no contexto dos campos de Dirac , Klein-Gordon e Isospin. No bojo da equação de Schrödinger no espaço de fase, as quasi-amplitudes de probabilidade foram utilizadas no cálculo da função de Wigner para potenciais do tipo Hénon-Heiles. A análise da negatividade da função de Wigner para sistemas caóticos foi realizada mediante uma teoria de perturbação independente do tempo para o caso não degenerado. ________________________________________________________________________________________________ ABSTRACT / In this work, we use a representation of the symplectic quantum mechanics to study abelian and non-abelian gauge theories, and the solutions of the Schrödinger equation for chaotic systems in the phase space. In the framework of gauge theories, we use the quasi-amplitudes of probabilities in the phase space to analyse transformations of ψ(q,p)→e^(-i˄(q,p) )*ψ(q,p) in the context of the Dirac, Klein-Gordon and Isospin fields. In the core of the Schrödinger equation in phase space, the quasi-amplitudes of probability were used in the calculation of the Wigner function for Hénon-Heiles potential-like. The analysis of the negativity of the Wigner function for chaotic systems was carried out by a time-independent perturbation theory for the nondegenerate case.

Page generated in 0.0615 seconds