• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ajuste do modelo linear de efeito misto na relação hipsométrica em plantios comerciais de Tectona grandis L.f. / Application of the mixed-effect linear model in height-diameter equation on commercial plantations of Tectona grandis L.f.

Ferreira, Lucas do Nascimento 06 July 2018 (has links)
A modelagem de predição de altura comumente exige um amplo conjunto de dados para a etapa de construção e ajuste. Ainda que este tipo de conjunto de dados tenha uma estrutura hierárquica natural, organizada pelas diferentes fazendas, talhões, parcelas, e etc., os modelos de regressão clássicos não consideram a possível variação dos parâmetros, entre os diversos grupos hierárquicos. Os modelos de efeitos mistos, em compensação, podem suportar essa variação, assumindo alguns dos parâmetros dos modelos como sendo estocásticos, além de mostrarem potencial com a possibilidade de diminuição de amostras. Esta técnica permite que a variação interindividual seja explicada considerando parâmetros de efeitos fixos (comuns à população) e parâmetros de efeitos aleatórios (específicos para cada indivíduo). Logo, é natural esperar que em povoamentos florestais com alta variação entre indivíduos, o modelo de efeito misto tenha desempenho superior ao modelo de efeito fixo. Por esta razão, os plantios de Tectona grandis L.f. podem ser considerados como uma população interessante para a modelagem de efeitos aleatórios, uma vez que tal espécie apresenta heterogeneidade de crescimento, sensibilidade à fertilidade e acidez do solo, e a maioria dos seus plantios estabelecidos no Brasil são seminais. Desta maneira este trabalho verifica o ajuste de modelos de efeitos mistos aplicados aos dados de altura total em plantios comerciais de Tectona grandis L.f, localizados no estado do Mato Grosso, com o objetivo na redução do número de amostras quando comparado ao modelo de efeitos fixos. Após a seleção do modelo linear de efeito fixo mais apropriado, testou-se quais dos coeficientes tem efeito aleatório nos diferentes agrupamentos dos dados. Em seguida, selecionou-se o grupo onde o desempenho do modelo de efeito misto em termos de ajuste e predição foi o melhor possível. Por fim, foi verificado a capacidade preditiva dos modelos ajustados por meio de processos de simulação e validação cruzada. Os resultados mostraram que o modelo misto calibrado fornece predições mais confiáveis do que a parte fixa. Este benefício ocorre mesmo ao longo das gradativas diminuições do número de árvores disponíveis para ajuste dentro conjunto de dados teste separados para a calibração do modelo misto. É possível concluir que o modelo calibrado ajustado por talhão, ao invés da parcela, propicia pouca perda de precisão. / Height prediction modeling commonly requires a broad set of data for the construction and adjustment step. Although this type of data set has a natural hierarchical structure, organized by the different farms, plots, plots, etc., the classical regression models do not consider the possible variation of the parameters among the hierarchical groups. The mixed effects models, in compensation, can support this variation, assuming some of the parameters of the models as being stochastic, besides showing potential with the possibility of sample reduction. This technique allows the interindividual variation to be explained considering parameters of fixed effects (common to the population) and parameters of random effects (specific for each individual). Therefore, it is natural to expect that in forest stands with high variation among individuals, the mixed effect model performs better than the fixed effect model. For this reason, the plantations of Tectona grandis L.f. can be considered as an interesting population for the modeling of random effects, since this species presents possible heterogeneity of growth since it is sensitive to the fertility and acidity of the soil, and most of its plantations established in Brazil are seminal. This work verifies the adjustment of mixed effects models applied to total height data in commercial plantations of Tectona grandis L.f, located in the state of Mato Grosso, with the objective of reducing the number of samples when compared to the fixed effects model. After selecting the most appropriate linear model of fixed effect, we tested which of the coefficients have random effect in the different groupings of the data. Then, we selected the group where the performance of the mixed effect model in terms of fit and prediction was the best possible. Finally, the predictive capacity of the adjusted models was verified through simulation and cross-validation processes. The results showed that the calibrated mixed model provides more reliable predictions than the fixed part. This benefit occurs even along the gradual decreases in the number of trees available to fit into separate set of test data for the calibration of the mixed model. It is possible to conclude that the calibrated model adjusted by stand, instead of the plot, provides little loss of precision.
2

Ajuste do modelo linear de efeito misto na relação hipsométrica em plantios comerciais de Tectona grandis L.f. / Application of the mixed-effect linear model in height-diameter equation on commercial plantations of Tectona grandis L.f.

Lucas do Nascimento Ferreira 06 July 2018 (has links)
A modelagem de predição de altura comumente exige um amplo conjunto de dados para a etapa de construção e ajuste. Ainda que este tipo de conjunto de dados tenha uma estrutura hierárquica natural, organizada pelas diferentes fazendas, talhões, parcelas, e etc., os modelos de regressão clássicos não consideram a possível variação dos parâmetros, entre os diversos grupos hierárquicos. Os modelos de efeitos mistos, em compensação, podem suportar essa variação, assumindo alguns dos parâmetros dos modelos como sendo estocásticos, além de mostrarem potencial com a possibilidade de diminuição de amostras. Esta técnica permite que a variação interindividual seja explicada considerando parâmetros de efeitos fixos (comuns à população) e parâmetros de efeitos aleatórios (específicos para cada indivíduo). Logo, é natural esperar que em povoamentos florestais com alta variação entre indivíduos, o modelo de efeito misto tenha desempenho superior ao modelo de efeito fixo. Por esta razão, os plantios de Tectona grandis L.f. podem ser considerados como uma população interessante para a modelagem de efeitos aleatórios, uma vez que tal espécie apresenta heterogeneidade de crescimento, sensibilidade à fertilidade e acidez do solo, e a maioria dos seus plantios estabelecidos no Brasil são seminais. Desta maneira este trabalho verifica o ajuste de modelos de efeitos mistos aplicados aos dados de altura total em plantios comerciais de Tectona grandis L.f, localizados no estado do Mato Grosso, com o objetivo na redução do número de amostras quando comparado ao modelo de efeitos fixos. Após a seleção do modelo linear de efeito fixo mais apropriado, testou-se quais dos coeficientes tem efeito aleatório nos diferentes agrupamentos dos dados. Em seguida, selecionou-se o grupo onde o desempenho do modelo de efeito misto em termos de ajuste e predição foi o melhor possível. Por fim, foi verificado a capacidade preditiva dos modelos ajustados por meio de processos de simulação e validação cruzada. Os resultados mostraram que o modelo misto calibrado fornece predições mais confiáveis do que a parte fixa. Este benefício ocorre mesmo ao longo das gradativas diminuições do número de árvores disponíveis para ajuste dentro conjunto de dados teste separados para a calibração do modelo misto. É possível concluir que o modelo calibrado ajustado por talhão, ao invés da parcela, propicia pouca perda de precisão. / Height prediction modeling commonly requires a broad set of data for the construction and adjustment step. Although this type of data set has a natural hierarchical structure, organized by the different farms, plots, plots, etc., the classical regression models do not consider the possible variation of the parameters among the hierarchical groups. The mixed effects models, in compensation, can support this variation, assuming some of the parameters of the models as being stochastic, besides showing potential with the possibility of sample reduction. This technique allows the interindividual variation to be explained considering parameters of fixed effects (common to the population) and parameters of random effects (specific for each individual). Therefore, it is natural to expect that in forest stands with high variation among individuals, the mixed effect model performs better than the fixed effect model. For this reason, the plantations of Tectona grandis L.f. can be considered as an interesting population for the modeling of random effects, since this species presents possible heterogeneity of growth since it is sensitive to the fertility and acidity of the soil, and most of its plantations established in Brazil are seminal. This work verifies the adjustment of mixed effects models applied to total height data in commercial plantations of Tectona grandis L.f, located in the state of Mato Grosso, with the objective of reducing the number of samples when compared to the fixed effects model. After selecting the most appropriate linear model of fixed effect, we tested which of the coefficients have random effect in the different groupings of the data. Then, we selected the group where the performance of the mixed effect model in terms of fit and prediction was the best possible. Finally, the predictive capacity of the adjusted models was verified through simulation and cross-validation processes. The results showed that the calibrated mixed model provides more reliable predictions than the fixed part. This benefit occurs even along the gradual decreases in the number of trees available to fit into separate set of test data for the calibration of the mixed model. It is possible to conclude that the calibrated model adjusted by stand, instead of the plot, provides little loss of precision.
3

Efeitos adversos da poluição atmosférica em crianças e adolescentes devido a queimadas na Amazônia: uma abordagem de modelos mistos em estudos de painel / Adverse effects of air pollution in children and adolescents due to fires in the Amazon: a mixed models approach in panel studies

Ludmilla da Silva Viana Jacobson 01 April 2013 (has links)
Esta tese investiga os efeitos agudos da poluição atmosférica no pico de fluxo expiratório (PFE) de escolares com idades entre 6 e 15 anos, residentes em municípios da Amazônia Brasileira. O primeiro artigo avaliou os efeitos do material particulado fino (PM2,5) no PFE de 309 escolares do município de Alta Floresta, Mato Grosso (MT), durante a estação seca de 2006. Modelos de efeitos mistos foram estimados para toda a amostra e estratificados por turno escolar e presença de sintomas de asma. O segundo artigo expõe as estratégias utilizadas para a determinação da função de variância do erro aleatório dos modelos de efeitos mistos. O terceiro artigo analisa os dados do estudo de painel com 234 escolares, realizado na estação seca de 2008 em Tangará da Serra, MT. Avaliou-se os efeitos lineares e com defasagem distribuída (PDLM) do material particulado inalável (PM10), do PM2,5 e do Black Carbon (BC) no PFE de todos os escolares e estratificados por grupos de idade. Nos três artigos, os modelos de efeitos mistos foram ajustados por tendência temporal, temperatura, umidade e características individuais. Os modelos também consideraram o ajuste da autocorrelação residual e da função de variância do erro aleatório. Quanto às exposições, foram avaliados os efeitos das exposições de 5hs, 6hs, 12hs e 24hs, no dia corrente, com defasagens de 1 a 5 dias e das médias móveis de 2 e 3 dias. No que se refere aos resultados de Alta Floresta, os modelos para todas as crianças indicaram reduções no PFE variando de 0,26 l/min (IC95%: 0,49; 0,04) a 0,38 l/min (IC95%: 0,71; 0,04), para cada aumento de 10g/m3 no PM2,5. Não foram observados efeitos significativos da poluição no grupo das crianças asmáticas. A exposição de 24hs apresentou efeito significativo no grupo de alunos da tarde e no grupo dos não asmáticos. A exposição de 0hs a 5:30hs foi significativa tanto para os alunos da manhã quanto para a tarde. Em Tangará da Serra, os resultados mostraram reduções significativas do PFE para aumentos de 10 unidades do poluente, principalmente para as defasagens de 3, 4 e 5 dias. Para o PM10, as reduções variaram de 0,15 (IC95%: 0,29; 0,01) a 0,25 l/min (IC95%: 0,40 ; 0,10). Para o PM2,5, as reduções estiveram entre 0,46 l/min (IC95%: 0,86 to 0,06 ) e 0,54 l/min (IC95%: 0,95; 0,14). E no BC, a redução foi de aproximadamente 0,014 l/min. Em relação ao PDLM, efeitos mais importantes foram observados nos modelos baseados na exposição do dia corrente até 5 dias passados. O efeito global foi significativo apenas para o PM10, com redução do PFE de 0,31 l/min (IC95%: 0,56; 0,05). Esta abordagem também indicou efeitos defasados significativos para todos os poluentes. Por fim, o estudo apontou as crianças de 6 a 8 anos como grupo mais sensível aos efeitos da poluição. Os achados da tese sugerem que a poluição atmosférica decorrente da queima de biomassa está associada a redução do PFE de crianças e adolescentes com idades entre 6 e 15 anos, residentes na Amazônia Brasileira. / This thesis investigates the acute effects of air pollution on peak expiratory flow (PEF) of schoolchildren between the ages of 6 and 15, living in Brazilian Amazon municipalities. The first article evaluated the effects of fine particulate matter (PM2.5) on PEF of 309 schoolchildren in the municipality of Alta Floresta, Mato Grosso (MT), during the dry season in 2006. Mixed effect models were estimated for the whole sample and stratified by the time of the day children attended school, and also by the presence of asthma symptoms. The second article describes the strategies used to determine the random error variance function of mixed effect models. The third one analyzes the data of the panel study with a sample of 234 schoolchildren carried out in Tangará da Serra, MT, during the dry season in 2008. Linear effects and the ones with distributed lag (PDLM) of inhalable particulate matter (PM10), PM2.5 and Black Carbon (BC) were assessed for the whole sample and stratified by age. In all three articles, the mixed effect models were adjusted by time trend, temperature, humidity and personal characteristics. The models also considered the adjustment of the residual autocorrelation and of the random error variance function. Regarding the exposures, its effects were evaluated in 5hs, 6hs, 12hs and 24hs, on the current day, with lags of 1 to 5 days and moving averages of 2 and 3 days. According to results in Alta Floresta, the models for all the children indicated reductions in the PEF varying from 0.26 l/min (CI95%: 0.49; 0.04) to 0.38 l/min (CI95%: 0.71; 0.04), for each increase of 10g/m3 on PM2.5. Significant effects of pollution were not observed in the group of asthmatic children. The 24-hour exposure presented significant effects in the group of students who attended school in the afternoon and in the group of non-asthmatic ones. The exposure from midnight to 5:30 A.M. was significant both to students who attended school in the morning and the ones who studied in the afternoon. In Tangará da Serra, the results showed significant reductions on the PEF for increases of 10 units of pollutants, mainly for lagged exposures of 3, 4 and 5 days. For PM10, the reductions varied from 0.15 (CI95%: 0.29; 0.01) to 0.25 l/min (CI95%: 0.40; 0.10). For PM2.5, the reductions ranged from 0.46 l/min (CI95%: 0.86 to 0.06) to 0.54 l/min (CI95%:0.95; 0.14). And for BC, the reduction was about 0.014 l/min. In relation to PDLM, more important effects were noticed in models based on the exposure of the current day until 5 past days. The global effect was significant only for PM10, with PEF reduction of 0.31 l/min (CI95%: 0.56; 0.05). This approach also indicated significant lagged effects for all pollutants. In the end, this study observed that the children between 6 and 8 years old were the most vulnerable to pollution effects. These findings in the thesis suggest that air pollution due to biomass burning is associated to PEF reduction in children and teenagers between the ages of 6 and 15, living in the Brazilian Amazon.
4

Efeitos adversos da poluição atmosférica em crianças e adolescentes devido a queimadas na Amazônia: uma abordagem de modelos mistos em estudos de painel / Adverse effects of air pollution in children and adolescents due to fires in the Amazon: a mixed models approach in panel studies

Ludmilla da Silva Viana Jacobson 01 April 2013 (has links)
Esta tese investiga os efeitos agudos da poluição atmosférica no pico de fluxo expiratório (PFE) de escolares com idades entre 6 e 15 anos, residentes em municípios da Amazônia Brasileira. O primeiro artigo avaliou os efeitos do material particulado fino (PM2,5) no PFE de 309 escolares do município de Alta Floresta, Mato Grosso (MT), durante a estação seca de 2006. Modelos de efeitos mistos foram estimados para toda a amostra e estratificados por turno escolar e presença de sintomas de asma. O segundo artigo expõe as estratégias utilizadas para a determinação da função de variância do erro aleatório dos modelos de efeitos mistos. O terceiro artigo analisa os dados do estudo de painel com 234 escolares, realizado na estação seca de 2008 em Tangará da Serra, MT. Avaliou-se os efeitos lineares e com defasagem distribuída (PDLM) do material particulado inalável (PM10), do PM2,5 e do Black Carbon (BC) no PFE de todos os escolares e estratificados por grupos de idade. Nos três artigos, os modelos de efeitos mistos foram ajustados por tendência temporal, temperatura, umidade e características individuais. Os modelos também consideraram o ajuste da autocorrelação residual e da função de variância do erro aleatório. Quanto às exposições, foram avaliados os efeitos das exposições de 5hs, 6hs, 12hs e 24hs, no dia corrente, com defasagens de 1 a 5 dias e das médias móveis de 2 e 3 dias. No que se refere aos resultados de Alta Floresta, os modelos para todas as crianças indicaram reduções no PFE variando de 0,26 l/min (IC95%: 0,49; 0,04) a 0,38 l/min (IC95%: 0,71; 0,04), para cada aumento de 10g/m3 no PM2,5. Não foram observados efeitos significativos da poluição no grupo das crianças asmáticas. A exposição de 24hs apresentou efeito significativo no grupo de alunos da tarde e no grupo dos não asmáticos. A exposição de 0hs a 5:30hs foi significativa tanto para os alunos da manhã quanto para a tarde. Em Tangará da Serra, os resultados mostraram reduções significativas do PFE para aumentos de 10 unidades do poluente, principalmente para as defasagens de 3, 4 e 5 dias. Para o PM10, as reduções variaram de 0,15 (IC95%: 0,29; 0,01) a 0,25 l/min (IC95%: 0,40 ; 0,10). Para o PM2,5, as reduções estiveram entre 0,46 l/min (IC95%: 0,86 to 0,06 ) e 0,54 l/min (IC95%: 0,95; 0,14). E no BC, a redução foi de aproximadamente 0,014 l/min. Em relação ao PDLM, efeitos mais importantes foram observados nos modelos baseados na exposição do dia corrente até 5 dias passados. O efeito global foi significativo apenas para o PM10, com redução do PFE de 0,31 l/min (IC95%: 0,56; 0,05). Esta abordagem também indicou efeitos defasados significativos para todos os poluentes. Por fim, o estudo apontou as crianças de 6 a 8 anos como grupo mais sensível aos efeitos da poluição. Os achados da tese sugerem que a poluição atmosférica decorrente da queima de biomassa está associada a redução do PFE de crianças e adolescentes com idades entre 6 e 15 anos, residentes na Amazônia Brasileira. / This thesis investigates the acute effects of air pollution on peak expiratory flow (PEF) of schoolchildren between the ages of 6 and 15, living in Brazilian Amazon municipalities. The first article evaluated the effects of fine particulate matter (PM2.5) on PEF of 309 schoolchildren in the municipality of Alta Floresta, Mato Grosso (MT), during the dry season in 2006. Mixed effect models were estimated for the whole sample and stratified by the time of the day children attended school, and also by the presence of asthma symptoms. The second article describes the strategies used to determine the random error variance function of mixed effect models. The third one analyzes the data of the panel study with a sample of 234 schoolchildren carried out in Tangará da Serra, MT, during the dry season in 2008. Linear effects and the ones with distributed lag (PDLM) of inhalable particulate matter (PM10), PM2.5 and Black Carbon (BC) were assessed for the whole sample and stratified by age. In all three articles, the mixed effect models were adjusted by time trend, temperature, humidity and personal characteristics. The models also considered the adjustment of the residual autocorrelation and of the random error variance function. Regarding the exposures, its effects were evaluated in 5hs, 6hs, 12hs and 24hs, on the current day, with lags of 1 to 5 days and moving averages of 2 and 3 days. According to results in Alta Floresta, the models for all the children indicated reductions in the PEF varying from 0.26 l/min (CI95%: 0.49; 0.04) to 0.38 l/min (CI95%: 0.71; 0.04), for each increase of 10g/m3 on PM2.5. Significant effects of pollution were not observed in the group of asthmatic children. The 24-hour exposure presented significant effects in the group of students who attended school in the afternoon and in the group of non-asthmatic ones. The exposure from midnight to 5:30 A.M. was significant both to students who attended school in the morning and the ones who studied in the afternoon. In Tangará da Serra, the results showed significant reductions on the PEF for increases of 10 units of pollutants, mainly for lagged exposures of 3, 4 and 5 days. For PM10, the reductions varied from 0.15 (CI95%: 0.29; 0.01) to 0.25 l/min (CI95%: 0.40; 0.10). For PM2.5, the reductions ranged from 0.46 l/min (CI95%: 0.86 to 0.06) to 0.54 l/min (CI95%:0.95; 0.14). And for BC, the reduction was about 0.014 l/min. In relation to PDLM, more important effects were noticed in models based on the exposure of the current day until 5 past days. The global effect was significant only for PM10, with PEF reduction of 0.31 l/min (CI95%: 0.56; 0.05). This approach also indicated significant lagged effects for all pollutants. In the end, this study observed that the children between 6 and 8 years old were the most vulnerable to pollution effects. These findings in the thesis suggest that air pollution due to biomass burning is associated to PEF reduction in children and teenagers between the ages of 6 and 15, living in the Brazilian Amazon.
5

Influência da estrutura da vegetação sobre a diversidade e detectabilidade das espécies de aves do Cerrado / Influence of vegetation structure on the diversity and detectability of Cerrado birds

Rodrigues, Rodolpho Credo 12 August 2016 (has links)
Em diversos estudos ao redor do globo, a estrutura e heterogeneidade da vegetação têm se mostrado um fator determinante na diversidade de espécies de aves e também de outros grupos de animais. O Cerrado é o segundo mais extenso e mais ameaçado bioma de ocorrência no Brasil. Este bioma também é caracterizado por um evidente gradiente ambiental de estrutura e heterogeneidade de vegetação. Na presente tese analisamos a influência da estrutura e heterogeneidade da vegetação sobre a diversidade em comunidades de aves do Cerrado. Nossa expectativa era corroborar a “Hipótese de Heterogeneidade de Habitats”, que propõe que quanto maior a estrutura e heterogeneidade da vegetação, maior será a diversidade de espécies. No primeiro capítulo, realizamos uma compilação sistemática de estudos publicados sobre a diversidade de aves em áreas ocupadas por algumas fisionomias típicas de Cerrado lato sensu, com o intuito de analisar o conhecimento obtido até então acerca da relação entre diversidade de aves e a estrutura da vegetação no Cerrado. Foram selecionadas 72 amostras de 22 estudos, sendo que estas amostras variaram quanto ao tipo fisionomia amostrada e o método amostral empregado, além de também estarem disponíveis em diferentes artigos e serem realizadas em diferentes regiões geográficas. Para análises destes dados, utilizamos a análise de modelos lineares generalizados de efeitos mistos (modelo com distribuição de erros poisson), que permite analisar os efeitos de variáveis fixas e aleatórias sobre a variável explicativa (riqueza de espécies). As variáveis fixas foram o tipo de vegetação amostrada (vegetação campestre, savânica e florestal) e o método amostral empregado (ponto fixo, transecto e redes de neblina). Já as variáveis de efeito aleatório utilizadas foram o estudo onde os dados foram publicados, o autor de cada estudo e a localidade geográfica. O efeito destas variáveis aleatórias poderiam afetar somente os interceptos das relações entre as variáveis fixas e a variável explicativa ou poderiam alterar a relação entre as variáveis fixas e explicativa. Construímos diversos modelos a partir da combinação de variáveis de efeito fixo e aleatório e a seleção do modelo mais parcimonioso foi feito por meio do critério AICc (critério de informação de Akaike corrigido para pequenas amostras). O modelo que apresentou menor valor de AICc (mais parcimonioso) foi aquele que incluiu os efeitos de ambas variáveis de efeito fixo (fisionomia e método amostral) e também um efeito da interação entre estas duas variáveis. Neste modelo também foram incluídos os efeitos das variáveis aleatórias estudo e localidade geográfica sobre os interceptos das relações entre as variáveis de efeito fixo e a variável explicativa. Estes resultados mostraram que a riqueza de espécies de aves em nosso estudo variou não só em função da fisionomia e do método amostral empregado, mas dependendo do método amostral utilizado a relação entre riqueza e fisionomia também foi alterada. Portanto, esta interação não permitiu que fosse estimada a relação entre fisionomia e riqueza sem considerar o efeito dos métodos. Já os efeitos das variáveis aleatórias mostraram que a variação estimada nos interceptos entre estudos foi duas vezes maior do que a variação estimada entre localidades geográficas. O efeito da interação entre as variáveis fisionomia e método amostral apontou para a existência de heterogeneidade de detecção entre locais com diferentes fisionomias, além também de um efeito das fisionomias na efetividade dos diferentes métodos amostrais. A influência dos métodos amostrais no número de espécies observadas em cada fisonomia pode ser esperada devido às diferenças intrínsecas dos métodos, já que ponto fixo e transecto são baseados em contatos visuais e auditivos com as espécies, enquanto que o método de rede de neblina consiste na captura passiva das espécies que voam na altura das redes. Assim, redes de neblina podem ser mais efetivas em habitats menos estruturados (por ex. campos limpos e sujos), onde a rede alcança quase todo os estratos de vegetação. No entanto, o método de transecto pode ser mais efetivo que o método de ponto fixo em áreas de florestas, pois nestes hábitats as espécies tendem a ter territórios menores e o deslocamento do observador proporciona ao observador cobrir um maior número de terrítórios. Por outro lado, o ponto fixo pode ser mais vantajoso por não produzir ruído e afugentar as espécies, o que pode ser uma desvantagem do método de transecto. Outros fatores, como a experiência e número de observadores, número de pontos amostrais, número de redes utilizadas e comprimento de transectos, podem explicar a grande variação estimada entre os estudos. Uma das maneiras de se contornar estes efeitos metodológicos é utilizar métodos desenvolvidos especialmente para lidar com diferentes probabilidades de detecção entre espécies, entre sítios e até métodos amostrais, o que poderia render dados mais confiáveis para o estudo da ecologia das espécies e para a elaboração de planos de manejo e/ou conservação. No segundo capítulo, a relação entre diversidade de aves e estrutura da vegetação foi analisada a partir de dados coletados em campo e utilizando um protocolo de amostragem específico para se estimar e considerar os efeitos da vegetação sobre a detecção das espécies. As amostragens foram realizadas em um dos maiores e mais preservados remanescentes de Cerrado (Parque Nacional Grande Sertão Veredas-PARNA GSV) e consistiram do registro das espécies de aves em 32 áreas dispostas em um gradiente de vegetação de Cerrado, que variaram desde campos limpos e sujos, campos cerrado a cerrados sensu stricto. O cálculo da riqueza de espécies de aves em cada sítio foi realizado através de modelos de ocupação-detecção, adaptados para estimar a riqueza de espécies em comunidades. A vegetação, por sua vez, foi medida a partir de estimativas de presença da vegetação entre 0 e 4 m de altura (16 intervalos de 22,5 cm cada um) e duas variáveis de estrutura foram obtidas a partir de uma análise de componentes principais, que foi aplicada para resumir a variação da presença de vegetação nos 16 intervalos de altura. Estas variáveis de vegetação foram relacionadas tanto com a ocupação quanto com a detecção das espécies, já que a estrutura da vegetação poderia influenciar não só a ocorrência mas também a detecção das espécies. O dia da amostragem e também a temperatura no momento da amostragem também foram incluídas como covariáveis que poderiam afetar a detecção. Após a estimativa da riqueza de espécies pelo modelo de ocupação-detecção para comunidades, esta riqueza estimada foi relacionada por uma função quadrática com a estrutura da vegetação usando um modelo bayesiano de metanálise, que permitiu incluir a incerteza nas estimativas de riqueza na análise. A título de comparação, também foi ajustado um modelo quadrático GLM (distribuição de erros normal) aos dados de riqueza observada. Os resultados mostraram que a riqueza estimada a partir dos dados das 38 espécies mais detectadas durante as amostragens teve uma fraca relação com as duas covariáveis de estrutura de vegetação, sendo que houve uma maior riqueza de espécies em sítios com vegetação intermediária em altura e uma maior riqueza de espécies de aves em sítios onde houve maior presença de vegetação abaixo de 2 m de altura. No entanto, as relações entre riqueza estimada e estas covariáveis foi menos intensa mas qualitativamente similar às relações entre a riqueza observada e as covariáveis de vegetação. A menor intensidade nas relações da riqueza estimada foi evidenciada principalmente em ambos os extremos do gradiente de estrutura vertical da vegetação e também nas áreas com menor presença de vegetação abaixo de 2 m. Estes resultados mostraram que o efeito da detecção pode alterar o efeito da relação entre riqueza de espécies e estrutura de vegetação. Além disso, ao menos para as 38 espécies mais comumente encontradas na área de estudo, os resultados apontam para a importância de todo o gradiente de estrutura da vegetação para a manutenção da riqueza de espécies de aves no Cerrado. Futuros estudos que visem aprimorar o uso destes modelos de ocupação e detecção para comunidades são fundamentais para permitir o uso dos dados de todas as espécies da comunidade. Além disto, outros estudos que se proponham a analisar a dinâmica e composição das comunidades de aves nestes gradientes de estrutura de vegetação são fundamentais para um maior conhecimento sobre a ecologia e conservação das aves no Cerrado / In several studies around the globe, the structure and diversity of vegetation have been shown to be a determining factor in the diversity of species of birds and also other groups of animals. The Cerrado is the second most extensive and most threatened biome occurrence in Brazil. This biome is also characterized by an obvious environmental gradient of vegetation structure and heterogeneity. In this thesis we analysed the influence of the structure and diversity of the vegetation on the diversity in the Cerrado bird communities. Our expectation was to support the “Habitat Heterogeneity Hypothesis” which suggests that the higher the structure and diversity of vegetation, the greater the diversity of species. In the first chapter, we conducted a systematic compilation of published studies on the diversity of birds in areas occupied by some typical physiognomy of Cerrado textit lato sensu, in order to analyze the knowledge obtained so far about the relationship between diversity of birds and the structure of the vegetation in the Cerrado. We selected 72 samples from 22 studies, and these samples varied as the sampled vegetation physiognomy, the sampling method used, and they also are available in different articles and be carried out in different geographical regions. We performed the analysis of generalized linear mixed effects models (model poisson distribution errors), which allows us to analyse the effects of fixed and random variables on the explanatory variable (species richness). Fixed variables were the type of sampled vegetation (grassland, savanna and forest) and the sample method employed (fixed point, transect and mist nets). The random variables used were the study where the data were published, the author of each study and geographic location. These random variables could only affect the intercepts of the relationship between fixed and variable explanatory variable or could alter the relationship between fixed and explanatory variables. We built several models from the combination of fixed and random effects variables and selection the most parsimonious model was made by the AIC criterion (Akaike information criterion corrected for small samples). The model that showed lower value of AIC (more parsimonious) was the one that included the effects of both fixed effect variables (physiognomy and sampling method) and also an effect of the interaction between these two variables. In this model were also included the effects of random variables study and geographic location of the intercepts of the relationship between the fixed effect variables and the explanatory variable. These results showed that the bird species richness in our study varied not only in terms of physiognomy and sample method, but depending on the sampling method used the relationship between richness and physiognomy has also changed. Therefore, this interaction does not allowed us to estimate the relationship between physiognomy and richness without considering the effect of the methods. Since the effects of random variables showed that the variation in the estimated intercept between studies was twice larger than the estimated variation between geographic locations. The effect of interaction between the vegetation physiognomy and sampling method variables pointed to the existence of heterogeneity detection between locations with different physiognomies, in addition also of an effect of the physiognomies in the effectiveness of different sampling methods. The influence of the sampling method in the number of species observed in each physiognomy may be expected due to intrinsic differences in the methods, since fixed point counts and transect are based on visual and aural contacts with the species, while the mist net method consists in passive capture of species flying at the time of the networks. Thus, mist nets may be more effective in less structured environments (eg. Clean and dirty fields) where the net reaches virtually all vegetation layers. However, transect method can be more effective than the fixed point method in areas of forests since in these habitats species tend to have smaller territory areas, and the observer movement provides the observer cover greater areas. On the other hand, the point counts can be more advantageous not to produce noise and chase species, which may be a disadvantage of transect method. Other factors, such as experience and number of observers, the number of sampling points, the number of nets used and length of transects, may explain the wide variation between studies estimated. One of the ways to overcome these methodological effects is to use methods developed especially to deal with different probabilities of detection of species, between sites and sampling methods, which could yield more reliable data for the ecological study of the species and the development of management plans and/or conservation. In the second chapter, the relationship between diversity of birds and vegetation structure was analysed from data collected in the field and using a specific sampling protocol to estimate and consider the effects of vegetation on the detection of species. The samples were taken in one of the largest and well preserved remnants of Cerrado (Grande Sertão Veredas National Park-PARNA GSV) and consisted of the record of bird speciesin 32 areas arranged in a Cerrado vegetation gradient, ranging from grasslands, open and dense savannas. The calculation of the bird species richness at each site was conducted using occupancy-detection models adapted to estimate the number of species in communities. The vegetation, in turn, was measured from estimates of the presence of vegetation in height intervals between 0 and 4 m (16 intervals of 22.5 cm each) and two structure variables were obtained from a principal component analysis applied to summarize the variation of the vegetation presence in height intervals. These vegetation variables were related to both the occupation and detection of species, since the vegetation structure could influence not only the occurrence but also the detection of species. The day of sampling and also the temperature at the time of sampling were also included as covariates that may a_ect the detection. After the estimation of species richness by model occupancy detection for communities, this estimated richness was related by a quadratic function with the vegetation structure using a Bayesian meta-analysis model, which allowed us include uncertainty in richness estimates. By way of comparison, we also fit a quadratic model GLM (normal distribution errors) to the observed richness data. The results showed that the richness estimated from the data of the 38 most detected species during sampling had a weak relationship with both covariates vegetation structure, and there was a greater number of species at sites with intermediate vegetation height and greater bird species richness in places where there was a greater presence of vegetation below 2 m in height. However, relations between estimated richness and these covariates was less intense but qualitatively similar to the relationship between observed richness and vegetation covariates. The lowest intensity in the estimated richness relationship was observed mainly at both ends of the vertical gradient of vegetation and also in areas with less presence of vegetation below 2 m. These results showed that the effect of detection can change the effect of the relationship between species richness and vegetation structure. Moreover, at least for the 38 species most commonly found in the study area, the results point to the importance of the entire vegetation structure gradient to maintain the bird species richness in Cerrado. Future studies aiming to improve the use of these models of occupation and detection for communities are essential to allow the use of data of all species in the community. In addition, other studies that propose to analyse the dynamics and composition of bird communities in these vegetation structure gradients are fundamental for a better understanding of the ecology and conservation of Cerrado birds
6

Influência da estrutura da vegetação sobre a diversidade e detectabilidade das espécies de aves do Cerrado / Influence of vegetation structure on the diversity and detectability of Cerrado birds

Rodolpho Credo Rodrigues 12 August 2016 (has links)
Em diversos estudos ao redor do globo, a estrutura e heterogeneidade da vegetação têm se mostrado um fator determinante na diversidade de espécies de aves e também de outros grupos de animais. O Cerrado é o segundo mais extenso e mais ameaçado bioma de ocorrência no Brasil. Este bioma também é caracterizado por um evidente gradiente ambiental de estrutura e heterogeneidade de vegetação. Na presente tese analisamos a influência da estrutura e heterogeneidade da vegetação sobre a diversidade em comunidades de aves do Cerrado. Nossa expectativa era corroborar a “Hipótese de Heterogeneidade de Habitats”, que propõe que quanto maior a estrutura e heterogeneidade da vegetação, maior será a diversidade de espécies. No primeiro capítulo, realizamos uma compilação sistemática de estudos publicados sobre a diversidade de aves em áreas ocupadas por algumas fisionomias típicas de Cerrado lato sensu, com o intuito de analisar o conhecimento obtido até então acerca da relação entre diversidade de aves e a estrutura da vegetação no Cerrado. Foram selecionadas 72 amostras de 22 estudos, sendo que estas amostras variaram quanto ao tipo fisionomia amostrada e o método amostral empregado, além de também estarem disponíveis em diferentes artigos e serem realizadas em diferentes regiões geográficas. Para análises destes dados, utilizamos a análise de modelos lineares generalizados de efeitos mistos (modelo com distribuição de erros poisson), que permite analisar os efeitos de variáveis fixas e aleatórias sobre a variável explicativa (riqueza de espécies). As variáveis fixas foram o tipo de vegetação amostrada (vegetação campestre, savânica e florestal) e o método amostral empregado (ponto fixo, transecto e redes de neblina). Já as variáveis de efeito aleatório utilizadas foram o estudo onde os dados foram publicados, o autor de cada estudo e a localidade geográfica. O efeito destas variáveis aleatórias poderiam afetar somente os interceptos das relações entre as variáveis fixas e a variável explicativa ou poderiam alterar a relação entre as variáveis fixas e explicativa. Construímos diversos modelos a partir da combinação de variáveis de efeito fixo e aleatório e a seleção do modelo mais parcimonioso foi feito por meio do critério AICc (critério de informação de Akaike corrigido para pequenas amostras). O modelo que apresentou menor valor de AICc (mais parcimonioso) foi aquele que incluiu os efeitos de ambas variáveis de efeito fixo (fisionomia e método amostral) e também um efeito da interação entre estas duas variáveis. Neste modelo também foram incluídos os efeitos das variáveis aleatórias estudo e localidade geográfica sobre os interceptos das relações entre as variáveis de efeito fixo e a variável explicativa. Estes resultados mostraram que a riqueza de espécies de aves em nosso estudo variou não só em função da fisionomia e do método amostral empregado, mas dependendo do método amostral utilizado a relação entre riqueza e fisionomia também foi alterada. Portanto, esta interação não permitiu que fosse estimada a relação entre fisionomia e riqueza sem considerar o efeito dos métodos. Já os efeitos das variáveis aleatórias mostraram que a variação estimada nos interceptos entre estudos foi duas vezes maior do que a variação estimada entre localidades geográficas. O efeito da interação entre as variáveis fisionomia e método amostral apontou para a existência de heterogeneidade de detecção entre locais com diferentes fisionomias, além também de um efeito das fisionomias na efetividade dos diferentes métodos amostrais. A influência dos métodos amostrais no número de espécies observadas em cada fisonomia pode ser esperada devido às diferenças intrínsecas dos métodos, já que ponto fixo e transecto são baseados em contatos visuais e auditivos com as espécies, enquanto que o método de rede de neblina consiste na captura passiva das espécies que voam na altura das redes. Assim, redes de neblina podem ser mais efetivas em habitats menos estruturados (por ex. campos limpos e sujos), onde a rede alcança quase todo os estratos de vegetação. No entanto, o método de transecto pode ser mais efetivo que o método de ponto fixo em áreas de florestas, pois nestes hábitats as espécies tendem a ter territórios menores e o deslocamento do observador proporciona ao observador cobrir um maior número de terrítórios. Por outro lado, o ponto fixo pode ser mais vantajoso por não produzir ruído e afugentar as espécies, o que pode ser uma desvantagem do método de transecto. Outros fatores, como a experiência e número de observadores, número de pontos amostrais, número de redes utilizadas e comprimento de transectos, podem explicar a grande variação estimada entre os estudos. Uma das maneiras de se contornar estes efeitos metodológicos é utilizar métodos desenvolvidos especialmente para lidar com diferentes probabilidades de detecção entre espécies, entre sítios e até métodos amostrais, o que poderia render dados mais confiáveis para o estudo da ecologia das espécies e para a elaboração de planos de manejo e/ou conservação. No segundo capítulo, a relação entre diversidade de aves e estrutura da vegetação foi analisada a partir de dados coletados em campo e utilizando um protocolo de amostragem específico para se estimar e considerar os efeitos da vegetação sobre a detecção das espécies. As amostragens foram realizadas em um dos maiores e mais preservados remanescentes de Cerrado (Parque Nacional Grande Sertão Veredas-PARNA GSV) e consistiram do registro das espécies de aves em 32 áreas dispostas em um gradiente de vegetação de Cerrado, que variaram desde campos limpos e sujos, campos cerrado a cerrados sensu stricto. O cálculo da riqueza de espécies de aves em cada sítio foi realizado através de modelos de ocupação-detecção, adaptados para estimar a riqueza de espécies em comunidades. A vegetação, por sua vez, foi medida a partir de estimativas de presença da vegetação entre 0 e 4 m de altura (16 intervalos de 22,5 cm cada um) e duas variáveis de estrutura foram obtidas a partir de uma análise de componentes principais, que foi aplicada para resumir a variação da presença de vegetação nos 16 intervalos de altura. Estas variáveis de vegetação foram relacionadas tanto com a ocupação quanto com a detecção das espécies, já que a estrutura da vegetação poderia influenciar não só a ocorrência mas também a detecção das espécies. O dia da amostragem e também a temperatura no momento da amostragem também foram incluídas como covariáveis que poderiam afetar a detecção. Após a estimativa da riqueza de espécies pelo modelo de ocupação-detecção para comunidades, esta riqueza estimada foi relacionada por uma função quadrática com a estrutura da vegetação usando um modelo bayesiano de metanálise, que permitiu incluir a incerteza nas estimativas de riqueza na análise. A título de comparação, também foi ajustado um modelo quadrático GLM (distribuição de erros normal) aos dados de riqueza observada. Os resultados mostraram que a riqueza estimada a partir dos dados das 38 espécies mais detectadas durante as amostragens teve uma fraca relação com as duas covariáveis de estrutura de vegetação, sendo que houve uma maior riqueza de espécies em sítios com vegetação intermediária em altura e uma maior riqueza de espécies de aves em sítios onde houve maior presença de vegetação abaixo de 2 m de altura. No entanto, as relações entre riqueza estimada e estas covariáveis foi menos intensa mas qualitativamente similar às relações entre a riqueza observada e as covariáveis de vegetação. A menor intensidade nas relações da riqueza estimada foi evidenciada principalmente em ambos os extremos do gradiente de estrutura vertical da vegetação e também nas áreas com menor presença de vegetação abaixo de 2 m. Estes resultados mostraram que o efeito da detecção pode alterar o efeito da relação entre riqueza de espécies e estrutura de vegetação. Além disso, ao menos para as 38 espécies mais comumente encontradas na área de estudo, os resultados apontam para a importância de todo o gradiente de estrutura da vegetação para a manutenção da riqueza de espécies de aves no Cerrado. Futuros estudos que visem aprimorar o uso destes modelos de ocupação e detecção para comunidades são fundamentais para permitir o uso dos dados de todas as espécies da comunidade. Além disto, outros estudos que se proponham a analisar a dinâmica e composição das comunidades de aves nestes gradientes de estrutura de vegetação são fundamentais para um maior conhecimento sobre a ecologia e conservação das aves no Cerrado / In several studies around the globe, the structure and diversity of vegetation have been shown to be a determining factor in the diversity of species of birds and also other groups of animals. The Cerrado is the second most extensive and most threatened biome occurrence in Brazil. This biome is also characterized by an obvious environmental gradient of vegetation structure and heterogeneity. In this thesis we analysed the influence of the structure and diversity of the vegetation on the diversity in the Cerrado bird communities. Our expectation was to support the “Habitat Heterogeneity Hypothesis” which suggests that the higher the structure and diversity of vegetation, the greater the diversity of species. In the first chapter, we conducted a systematic compilation of published studies on the diversity of birds in areas occupied by some typical physiognomy of Cerrado textit lato sensu, in order to analyze the knowledge obtained so far about the relationship between diversity of birds and the structure of the vegetation in the Cerrado. We selected 72 samples from 22 studies, and these samples varied as the sampled vegetation physiognomy, the sampling method used, and they also are available in different articles and be carried out in different geographical regions. We performed the analysis of generalized linear mixed effects models (model poisson distribution errors), which allows us to analyse the effects of fixed and random variables on the explanatory variable (species richness). Fixed variables were the type of sampled vegetation (grassland, savanna and forest) and the sample method employed (fixed point, transect and mist nets). The random variables used were the study where the data were published, the author of each study and geographic location. These random variables could only affect the intercepts of the relationship between fixed and variable explanatory variable or could alter the relationship between fixed and explanatory variables. We built several models from the combination of fixed and random effects variables and selection the most parsimonious model was made by the AIC criterion (Akaike information criterion corrected for small samples). The model that showed lower value of AIC (more parsimonious) was the one that included the effects of both fixed effect variables (physiognomy and sampling method) and also an effect of the interaction between these two variables. In this model were also included the effects of random variables study and geographic location of the intercepts of the relationship between the fixed effect variables and the explanatory variable. These results showed that the bird species richness in our study varied not only in terms of physiognomy and sample method, but depending on the sampling method used the relationship between richness and physiognomy has also changed. Therefore, this interaction does not allowed us to estimate the relationship between physiognomy and richness without considering the effect of the methods. Since the effects of random variables showed that the variation in the estimated intercept between studies was twice larger than the estimated variation between geographic locations. The effect of interaction between the vegetation physiognomy and sampling method variables pointed to the existence of heterogeneity detection between locations with different physiognomies, in addition also of an effect of the physiognomies in the effectiveness of different sampling methods. The influence of the sampling method in the number of species observed in each physiognomy may be expected due to intrinsic differences in the methods, since fixed point counts and transect are based on visual and aural contacts with the species, while the mist net method consists in passive capture of species flying at the time of the networks. Thus, mist nets may be more effective in less structured environments (eg. Clean and dirty fields) where the net reaches virtually all vegetation layers. However, transect method can be more effective than the fixed point method in areas of forests since in these habitats species tend to have smaller territory areas, and the observer movement provides the observer cover greater areas. On the other hand, the point counts can be more advantageous not to produce noise and chase species, which may be a disadvantage of transect method. Other factors, such as experience and number of observers, the number of sampling points, the number of nets used and length of transects, may explain the wide variation between studies estimated. One of the ways to overcome these methodological effects is to use methods developed especially to deal with different probabilities of detection of species, between sites and sampling methods, which could yield more reliable data for the ecological study of the species and the development of management plans and/or conservation. In the second chapter, the relationship between diversity of birds and vegetation structure was analysed from data collected in the field and using a specific sampling protocol to estimate and consider the effects of vegetation on the detection of species. The samples were taken in one of the largest and well preserved remnants of Cerrado (Grande Sertão Veredas National Park-PARNA GSV) and consisted of the record of bird speciesin 32 areas arranged in a Cerrado vegetation gradient, ranging from grasslands, open and dense savannas. The calculation of the bird species richness at each site was conducted using occupancy-detection models adapted to estimate the number of species in communities. The vegetation, in turn, was measured from estimates of the presence of vegetation in height intervals between 0 and 4 m (16 intervals of 22.5 cm each) and two structure variables were obtained from a principal component analysis applied to summarize the variation of the vegetation presence in height intervals. These vegetation variables were related to both the occupation and detection of species, since the vegetation structure could influence not only the occurrence but also the detection of species. The day of sampling and also the temperature at the time of sampling were also included as covariates that may a_ect the detection. After the estimation of species richness by model occupancy detection for communities, this estimated richness was related by a quadratic function with the vegetation structure using a Bayesian meta-analysis model, which allowed us include uncertainty in richness estimates. By way of comparison, we also fit a quadratic model GLM (normal distribution errors) to the observed richness data. The results showed that the richness estimated from the data of the 38 most detected species during sampling had a weak relationship with both covariates vegetation structure, and there was a greater number of species at sites with intermediate vegetation height and greater bird species richness in places where there was a greater presence of vegetation below 2 m in height. However, relations between estimated richness and these covariates was less intense but qualitatively similar to the relationship between observed richness and vegetation covariates. The lowest intensity in the estimated richness relationship was observed mainly at both ends of the vertical gradient of vegetation and also in areas with less presence of vegetation below 2 m. These results showed that the effect of detection can change the effect of the relationship between species richness and vegetation structure. Moreover, at least for the 38 species most commonly found in the study area, the results point to the importance of the entire vegetation structure gradient to maintain the bird species richness in Cerrado. Future studies aiming to improve the use of these models of occupation and detection for communities are essential to allow the use of data of all species in the community. In addition, other studies that propose to analyse the dynamics and composition of bird communities in these vegetation structure gradients are fundamental for a better understanding of the ecology and conservation of Cerrado birds

Page generated in 0.5149 seconds