• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo dos potenciais termodinâmico na coexistência de fase em modelos de rede através de simulação de Monte Carlo / Study of the thermodynamic functions and their convexity in the coexistence of phases

Alves, Jozismar Rodrigues 19 March 2018 (has links)
Na coexistência de fases, os campos termodinâmicos são grandezas constantes ao longo da coexistência. Quando o estudo desses sistemas é feito através de simulação de Monte Carlo, no entanto, os resultados obtidos para os campos podem apresentar laços, a depender do ensemble. Na literatura, os laços de potencial químico são conhecidos há bastante tempo e são atribuídos à interface mas não há trabalhos que discutam a restauração da convexidade. No caso do laço da temperatura, há trabalhos mais recentes, que apresentam dados para um buraco convexo na entropia em modelos de rede. Neste trabalho, retomamos o argumento heurístico de Terrell Hill da década de 60 e demonstramos numericamente a equivalência entre os ensemble canônico e grande canônico, bem como entre o microcanônico e o canônico. Além disso, pudemos restaurar a convexidade do potencial químico, reinterpretando a relação entre a energia livre termodinâmica e a energia livre estatística com a inclusão da contribuição da energia livre da interface. Nossa interpretação dos dados de simulação permitiu estabelecer um método muito simples para o cálculo da tensão superficial da interface. Na literatura, não temos métodos bem estabelecidos e gerais para o cálculo da pressão de equilíbrio em modelos de rede no ensemble canônico para mistura. O método de Gibbs-Duhem é muito simples apenas para sistemas puros. Estamos propondo um método para o cálculo da pressão no ensemble canônico para modelos de rede, que pode ser aplicado a misturas. O método é baseado na discretização da energia livre com relação ao volume, e descreve a variação do volume em termos da retirada de uma coluna vazia ou ocupada por partículas. Para sistemas puros, comparamos nosso método com os métodos de Dickman e de Gibbs-Duhem. Mostramos que nossa proposta leva a resultados que se aproximam dos resultados de Gibbs-Duhem, que pode ser considerado exato, à medida que aumentamos a rede. Verificamos que o método de Dickman não é adaptado para o estudo da coexistência de fases, pois o sistema não apresenta um dos laços que permite estabelecer a densidade da fase de densidade maior. Os resultados para altas densidades são incorretos. Isso ocorre devido ao fato do método não permitir a utilização de condição periódica de contorno, em uma das direções. Nosso trabalho foi realizado para os modelos de fluido de rede, puro e mistura, com interações isotrópicas, e para o modelo de Bell, de um sistema puro, que apresenta interações orientacionais. Os resultados foram obtidos utilizando o algoritmo de Metropolis, o algoritmo Wang-Landau, e uma adaptação do método Multicanônico com o algoritmo de Wang-Landau. O uso dos dois últimos é imprescindível para o estudo da equivalência de ensembles. / The thermodynamic fields are constant quantities along the co-existence isoterms. However, when the study of theses systems is done through Monte Carlo simulation, loops may be present, depending on the ensemble. The chemical potential loops have been known for a long time and have been understood as due to the interface. However, there are no studies which discuss the restoration of convexity, to our knowledge. In the case of loop of temperature, there are more recent works which point to of the a convex dip in entropy. In this research, we recover Hills heuristic argument from the 60s and numerically demonstrate the equivalence between the canonical and grand canonical ensembles, as well as between the microcanonical and canonical ensembles. Furthermore, we could restore the convexity of the chemical potential, reinterpreting the relation between the thermodynamic free energy and statistical free energy, through the inclusion of the contribution of the free energy of the interface. Our interpretation of simulation data made it possible to establish a very simple method to calculate the surface tension of the interface. In the literature, there are no well established or general methods to calculate the equilibrium pressure of lattice models for mixtures in the canonical ensemble. The Gibbs-Duhem method is very simple only for pure systems. We propose a method to calculate the pressure in the canonical ensemble for lattice models, which can be applied to mixtures. The method is based on the discretization of free energy related to volume and describes the variation in terms of the withdrawal of a lattice line, either empty or occupied by particles column. For pure systems, we have compared our method to Dickman\'s and to the Gibbs-Duhem method. We showed that our method reaches results which are close to the results of Gibbs-Duhem method, which can be considered exact, as we increase the lattice. We verified that the Dickman method is not adapted to the study of phase coexistence, since isotherms do not present one of the loops that allows establishes the density of the phase of higher density. Also, the results for high density are wrong. This happens because the method does not alow the of periodic boundary condition in one of the directions. Our investigation was carried out for pure fluids, both for isotropic orientational interactions, and for mixtures, for the case of isotropic interactions. The results were obtained by using the Metropolis algorithm, the Wang-Landau algorithm, and an adaptation of the Multicanonical method with the Wang-Landau algorithm. The two last are mandatory in the study of the equivalence of ensembles.
2

Estudo dos potenciais termodinâmico na coexistência de fase em modelos de rede através de simulação de Monte Carlo / Study of the thermodynamic functions and their convexity in the coexistence of phases

Jozismar Rodrigues Alves 19 March 2018 (has links)
Na coexistência de fases, os campos termodinâmicos são grandezas constantes ao longo da coexistência. Quando o estudo desses sistemas é feito através de simulação de Monte Carlo, no entanto, os resultados obtidos para os campos podem apresentar laços, a depender do ensemble. Na literatura, os laços de potencial químico são conhecidos há bastante tempo e são atribuídos à interface mas não há trabalhos que discutam a restauração da convexidade. No caso do laço da temperatura, há trabalhos mais recentes, que apresentam dados para um buraco convexo na entropia em modelos de rede. Neste trabalho, retomamos o argumento heurístico de Terrell Hill da década de 60 e demonstramos numericamente a equivalência entre os ensemble canônico e grande canônico, bem como entre o microcanônico e o canônico. Além disso, pudemos restaurar a convexidade do potencial químico, reinterpretando a relação entre a energia livre termodinâmica e a energia livre estatística com a inclusão da contribuição da energia livre da interface. Nossa interpretação dos dados de simulação permitiu estabelecer um método muito simples para o cálculo da tensão superficial da interface. Na literatura, não temos métodos bem estabelecidos e gerais para o cálculo da pressão de equilíbrio em modelos de rede no ensemble canônico para mistura. O método de Gibbs-Duhem é muito simples apenas para sistemas puros. Estamos propondo um método para o cálculo da pressão no ensemble canônico para modelos de rede, que pode ser aplicado a misturas. O método é baseado na discretização da energia livre com relação ao volume, e descreve a variação do volume em termos da retirada de uma coluna vazia ou ocupada por partículas. Para sistemas puros, comparamos nosso método com os métodos de Dickman e de Gibbs-Duhem. Mostramos que nossa proposta leva a resultados que se aproximam dos resultados de Gibbs-Duhem, que pode ser considerado exato, à medida que aumentamos a rede. Verificamos que o método de Dickman não é adaptado para o estudo da coexistência de fases, pois o sistema não apresenta um dos laços que permite estabelecer a densidade da fase de densidade maior. Os resultados para altas densidades são incorretos. Isso ocorre devido ao fato do método não permitir a utilização de condição periódica de contorno, em uma das direções. Nosso trabalho foi realizado para os modelos de fluido de rede, puro e mistura, com interações isotrópicas, e para o modelo de Bell, de um sistema puro, que apresenta interações orientacionais. Os resultados foram obtidos utilizando o algoritmo de Metropolis, o algoritmo Wang-Landau, e uma adaptação do método Multicanônico com o algoritmo de Wang-Landau. O uso dos dois últimos é imprescindível para o estudo da equivalência de ensembles. / The thermodynamic fields are constant quantities along the co-existence isoterms. However, when the study of theses systems is done through Monte Carlo simulation, loops may be present, depending on the ensemble. The chemical potential loops have been known for a long time and have been understood as due to the interface. However, there are no studies which discuss the restoration of convexity, to our knowledge. In the case of loop of temperature, there are more recent works which point to of the a convex dip in entropy. In this research, we recover Hills heuristic argument from the 60s and numerically demonstrate the equivalence between the canonical and grand canonical ensembles, as well as between the microcanonical and canonical ensembles. Furthermore, we could restore the convexity of the chemical potential, reinterpreting the relation between the thermodynamic free energy and statistical free energy, through the inclusion of the contribution of the free energy of the interface. Our interpretation of simulation data made it possible to establish a very simple method to calculate the surface tension of the interface. In the literature, there are no well established or general methods to calculate the equilibrium pressure of lattice models for mixtures in the canonical ensemble. The Gibbs-Duhem method is very simple only for pure systems. We propose a method to calculate the pressure in the canonical ensemble for lattice models, which can be applied to mixtures. The method is based on the discretization of free energy related to volume and describes the variation in terms of the withdrawal of a lattice line, either empty or occupied by particles column. For pure systems, we have compared our method to Dickman\'s and to the Gibbs-Duhem method. We showed that our method reaches results which are close to the results of Gibbs-Duhem method, which can be considered exact, as we increase the lattice. We verified that the Dickman method is not adapted to the study of phase coexistence, since isotherms do not present one of the loops that allows establishes the density of the phase of higher density. Also, the results for high density are wrong. This happens because the method does not alow the of periodic boundary condition in one of the directions. Our investigation was carried out for pure fluids, both for isotropic orientational interactions, and for mixtures, for the case of isotropic interactions. The results were obtained by using the Metropolis algorithm, the Wang-Landau algorithm, and an adaptation of the Multicanonical method with the Wang-Landau algorithm. The two last are mandatory in the study of the equivalence of ensembles.
3

Inomogeneidades no espaço (desordem fraca; modelos de p-spins) e representação no espaço de Fock em problemas da física estatística / Inhomogeneities in space (weak disorder; spins p models) and the Fock space representation problems in statistical physics.

Muzy, Paulo de Tarso Artencio 24 June 2004 (has links)
Investigamos a relevância da desordem (fraca) correlacionada ao longo de D IND. 1 dimensões, em modelos ferromagnéticos de Potts sobre diversas redes hierárquicas (de d dimensões). Mostramos que para d-d IND. 1 = 1 a aproximação de desordem fraca produz um ponto fixo não físico, indicando que o comportamento crítico não pode ser descrito por um esquema perturbativo. Para d-d IND.1>1, a desordem é relevante, produzindo um ponto fixo fisicamente aceitável. Estabelecemos um critério de relevância baseado no expoente de crossover. Em seguida examinamos modelos aleatórios com interações competitivas de p spins esféricos, na versão de Curie-Weiss, que podem ser resolvidos sem o método de réplicas. Obtemos o diagrama de fases de modelos incluindo interações de 2 e 4 spins, supondo formas simples (de acordo com os esquemas de Hopfield ou de van Hemmen para os termos aleatórios. Mostramos que as escolhas de Hopfield ou de van Hemmen não mudam a topologia dos diagramas de fase. Finalmente, apresentamos uma revisão da construção do espaço de Fock para sistemas hamiltonianos, originalmente proposta por M Schöenberg a fim de obter a mecânica estatística clássica a partir da equação de Liouville. O mesmo tipo de formalismo pode ser aplicado à equação mestra de um sistemas estocástico. Como exemplo, deduzimos o operador de evolução do modelo de Glauber linear na representação número. / Investigamos a relevância da desordem (fraca) correlacionada ao longo de D IND. 1 dimensões, em modelos ferromagnéticos de Potts sobre diversas redes hierárquicas (de d dimensões). Mostramos que para d-d IND. 1 = 1 a aproximação de desordem fraca produz um ponto fixo não físico, indicando que o comportamento crítico não pode ser descrito por um esquema perturbativo. Para d-d IND.1>1, a desordem é relevante, produzindo um ponto fixo fisicamente aceitável. Estabelecemos um critério de relevância baseado no expoente de crossover. Em seguida examinamos modelos aleatórios com interações competitivas de p spins esféricos, na versão de Curie-Weiss, que podem ser resolvidos sem o método de réplicas. Obtemos o diagrama de fases de modelos incluindo interações de 2 e 4 spins, supondo formas simples (de acordo com os esquemas de Hopfield ou de van Hemmen para os termos aleatórios. Mostramos que as escolhas de Hopfield ou de van Hemmen não mudam a topologia dos diagramas de fase. Finalmente, apresentamos uma revisão da construção do espaço de Fock para sistemas hamiltonianos, originalmente proposta por M Schöenberg a fim de obter a mecânica estatística clássica a partir da equação de Liouville. O mesmo tipo de formalismo pode ser aplicado à equação mestra de um sistemas estocástico. Como exemplo, deduzimos o operador de evolução do modelo de Glauber linear na representação número.
4

Inomogeneidades no espaço (desordem fraca; modelos de p-spins) e representação no espaço de Fock em problemas da física estatística / Inhomogeneities in space (weak disorder; spins p models) and the Fock space representation problems in statistical physics.

Paulo de Tarso Artencio Muzy 24 June 2004 (has links)
Investigamos a relevância da desordem (fraca) correlacionada ao longo de D IND. 1 dimensões, em modelos ferromagnéticos de Potts sobre diversas redes hierárquicas (de d dimensões). Mostramos que para d-d IND. 1 = 1 a aproximação de desordem fraca produz um ponto fixo não físico, indicando que o comportamento crítico não pode ser descrito por um esquema perturbativo. Para d-d IND.1>1, a desordem é relevante, produzindo um ponto fixo fisicamente aceitável. Estabelecemos um critério de relevância baseado no expoente de crossover. Em seguida examinamos modelos aleatórios com interações competitivas de p spins esféricos, na versão de Curie-Weiss, que podem ser resolvidos sem o método de réplicas. Obtemos o diagrama de fases de modelos incluindo interações de 2 e 4 spins, supondo formas simples (de acordo com os esquemas de Hopfield ou de van Hemmen para os termos aleatórios. Mostramos que as escolhas de Hopfield ou de van Hemmen não mudam a topologia dos diagramas de fase. Finalmente, apresentamos uma revisão da construção do espaço de Fock para sistemas hamiltonianos, originalmente proposta por M Schöenberg a fim de obter a mecânica estatística clássica a partir da equação de Liouville. O mesmo tipo de formalismo pode ser aplicado à equação mestra de um sistemas estocástico. Como exemplo, deduzimos o operador de evolução do modelo de Glauber linear na representação número. / Investigamos a relevância da desordem (fraca) correlacionada ao longo de D IND. 1 dimensões, em modelos ferromagnéticos de Potts sobre diversas redes hierárquicas (de d dimensões). Mostramos que para d-d IND. 1 = 1 a aproximação de desordem fraca produz um ponto fixo não físico, indicando que o comportamento crítico não pode ser descrito por um esquema perturbativo. Para d-d IND.1>1, a desordem é relevante, produzindo um ponto fixo fisicamente aceitável. Estabelecemos um critério de relevância baseado no expoente de crossover. Em seguida examinamos modelos aleatórios com interações competitivas de p spins esféricos, na versão de Curie-Weiss, que podem ser resolvidos sem o método de réplicas. Obtemos o diagrama de fases de modelos incluindo interações de 2 e 4 spins, supondo formas simples (de acordo com os esquemas de Hopfield ou de van Hemmen para os termos aleatórios. Mostramos que as escolhas de Hopfield ou de van Hemmen não mudam a topologia dos diagramas de fase. Finalmente, apresentamos uma revisão da construção do espaço de Fock para sistemas hamiltonianos, originalmente proposta por M Schöenberg a fim de obter a mecânica estatística clássica a partir da equação de Liouville. O mesmo tipo de formalismo pode ser aplicado à equação mestra de um sistemas estocástico. Como exemplo, deduzimos o operador de evolução do modelo de Glauber linear na representação número.

Page generated in 0.1084 seconds