• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal portfolio design to manage oyster resources

Nyanzu, Frederick 09 August 2019 (has links)
The State of Mississippi wants to manage its oyster resource to increase production, quality, ecological, and economic benefits. In this study, we employ modern portfolio theory (MPT) to test if there are potential gains to hold multiple oyster resources for multiple benefits to aid the state's effort in achieving its goal. Using a Delphi approach, we elicit complete sets of data on ecosystem services (on oxygen, nutrients, sedimentation, and salinity) across multiple oyster resources (traditional plantings, off-bottom farms, and restored reefs). A benefit transfer method is used later to assigned money-metric value to each service estimate. The multiple service values are then aggregated into net service value. We compute the means, standard deviations, and correlations of benefits across all resources using the net service values, and generate efficient frontiers from that information. Results indicate that Mississippi could benefit from holding multiple oyster resources while focusing more on off-bottom oyster farms.
2

Comparative Analysis of Portfolio Optimization Strategies

Eriksson, Adrian, Peterson, Erik January 2024 (has links)
Portfolio optimization is a crucial practice in finance aimed at maximizing the return while minimizing the risk through strategic asset allocation. This paper explores two distinct approaches to modeling robust portfolio optimization, comparing their efficacy in balancing the return and the risk. The first approach focuses on diversifying the portfolio by varying the number of stocks and sector allocation, while the second approach emphasizes minimizing risk by selecting stocks with low correlation. Theoretical foundations and mathematical formulations underpinning these approaches are discussed, incorporating concepts from Modern Portfolio Theory and Mixed Integer Linear Programming. Practical implementation involves data collection from Yahoo Finance API and computational analysis using Python and the optimization tool Gurobi. The results of these methodologies are evaluated, considering factors such as budget constraints, maximum and minimum investment limits, binary constraints, and correlation thresholds. The study concludes by discussing the implications of these findings and their relevance in contemporary financial decision-making processes.
3

Portfolio Optimization Problems with Cardinality Constraints

Esmaeily, Abolgasem, Loge, Felix January 2023 (has links)
This thesis analyzes the mean variance optimization problem with respect to cardinalityconstraints. The aim of this thesis is to figure out how much of an impact transactionchanges has on the profit and risk of a portfolio. We solve the problem by implementingmixed integer programming (MIP) and solving the problem by using the Gurobi solver.In doing this, we create a mathematical model that enforces the amount of transactionchanges from the initial portfolio. Our results is later showed in an Efficient Frontier,to see how the profit and risk are changing depending on the transaction changes.Overall, this thesis demonstrates that the application of MIP is an effective approachto solve the mean variance optimization problem and can lead to improved investmentoutcomes.
4

Multivariate Financial Time Series and Volatility Models with Applications to Tactical Asset Allocation / Multivariata finansiella tidsserier och volatilitetsmodeller med tillämpningar för taktisk tillgångsallokering

Andersson, Markus January 2015 (has links)
The financial markets have a complex structure and the modelling techniques have recently been more and more complicated. So for a portfolio manager it is very important to find better and more sophisticated modelling techniques especially after the 2007-2008 banking crisis. The idea in this thesis is to find the connection between the components in macroeconomic environment and portfolios consisting of assets from OMX Stockholm 30 and use these relationships to perform Tactical Asset Allocation (TAA). The more specific aim of the project is to prove that dynamic modelling techniques outperform static models in portfolio theory. / Den finansiella marknaden är av en väldigt komplex struktur och modelleringsteknikerna har under senare tid blivit allt mer komplicerade. För en portföljförvaltare är det av yttersta vikt att finna mer sofistikerade modelleringstekniker, speciellt efter finanskrisen 2007-2008. Idéen i den här uppsatsen är att finna ett samband mellan makroekonomiska faktorer och aktieportföljer innehållande tillgångar från OMX Stockholm 30 och använda dessa för att utföra Tactial Asset Allocation (TAA). Mer specifikt är målsättningen att visa att dynamiska modelleringstekniker har ett bättre utfall än mer statiska modeller i portföljteori.
5

Portfolio selection and hedge funds : linearity, heteroscedasticity, autocorrelation and tail-risk

Bianchi, Robert John January 2007 (has links)
Portfolio selection has a long tradition in financial economics and plays an integral role in investment management. Portfolio selection provides the framework to determine optimal portfolio choice from a universe of available investments. However, the asset weightings from portfolio selection are optimal only if the empirical characteristics of asset returns do not violate the portfolio selection model assumptions. This thesis explores the empirical characteristics of traditional assets and hedge fund returns and examines their effects on the assumptions of linearity-in-the-mean testing and portfolio selection. The encompassing theme of this thesis is the empirical interplay between traditional assets and hedge fund returns. Despite the paucity of hedge fund research, pension funds continue to increase their portfolio allocations to global hedge funds in an effort to pursue higher risk-adjusted returns. This thesis presents three empirical studies which provide positive insights into the relationships between traditional assets and hedge fund returns. The first two empirical studies examine an emerging body of literature which suggests that the relationship between traditional assets and hedge fund returns is non-linear. For mean-variance investors, non-linear asset returns are problematic as they do not satisfy the assumption of linearity required for the covariance matrix in portfolio selection. To examine the linearity assumption as it relates to a mean-variance investor, a hypothesis test approach is employed which investigates the linearity-in-the-mean of traditional assets and hedge funds. The findings from the first two empirical studies reveal that conventional linearity-in-the-mean tests incorrectly conclude that asset returns are nonlinear. We demonstrate that the empirical characteristics of heteroscedasticity and autocorrelation in asset returns are the primary sources of test mis-specification in these linearity-in-the-mean hypothesis tests. To address this problem, an innovative approach is proposed to control heteroscedasticity and autocorrelation in the underlying tests and it is shown that traditional assets and hedge funds are indeed linear-in-the-mean. The third and final study of this thesis explores traditional assets and hedge funds in a portfolio selection framework. Following the theme of the previous two studies, the effects of heteroscedasticity and autocorrelation are examined in the portfolio selection context. The characteristics of serial correlation in bond and hedge fund returns are shown to cause a downward bias in the second sample moment. This thesis proposes two methods to control for this effect and it is shown that autocorrelation induces an overallocation to bonds and hedge funds. Whilst heteroscedasticity cannot be directly examined in portfolio selection, empirical evidence suggests that heteroscedastic events (such as those that occurred in August 1998) translate into the empirical feature known as tail-risk. The effects of tail-risk are examined by comparing the portfolio decisions of mean-variance analysis (MVA) versus mean-conditional value at risk (M-CVaR) investors. The findings reveal that the volatility of returns in a MVA portfolio decreases when hedge funds are included in the investment opportunity set. However, the reduction in the volatility of portfolio returns comes at a cost of undesirable third and fourth moments. Furthermore, it is shown that investors with M-CVaR preferences exhibit a decreasing demand for hedge funds as their aversion for tail-risk increases. The results of the thesis highlight the sensitivities of linearity tests and portfolio selection to the empirical features of heteroscedasticity, autocorrelation and tail-risk. This thesis contributes to the literature by providing refinements to these frameworks which allow improved inferences to be made when hedge funds are examined in linearity and portfolio selection settings.

Page generated in 0.0648 seconds