• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect and mechanisms of nanomaterials on interface between aggregates and cement mortars

Wang, X., Dong, S., Ashour, Ashraf, Zhang, W., Han, B. 13 August 2020 (has links)
No / As the weakest zone in concrete, the interfacial transition zone (ITZ) between aggregates and cement mortars has important effects on the properties of concrete. This paper aims to investigate the effects and mechanisms of nanofillers on the bond strength and interfacial microstructures between aggregates and cement mortars. A total of 8 representative types of nanofillers (namely nano-SiO2, nano-TiO2, nano-ZrO2, untreated multi-walled carbon nanotubes (MWCNTs), hydroxyl-functionalized MWCNTs, nickel-coated MWCNTs, multi-layer graphenes (MLGs), and nano boron nitride (nano-BN)) were selected to fabricate specimens with scale-up aggregate-cement mortar interface that can be characterized by the three-point bend test. The experimental results indicate that all types of nanofillers can enhance the bond strength between aggregates and cement mortars. The highest relative/absolute increases of 2.1 MPa/35.1%, 2.32 MPa/38.8% and 2.56 MPa/42.8% in interfacial bond strength are achieved by incorporating 2 wt% of nano-ZrO2, 0.3 wt% of nickel-coated MWCNTs, and 0.3 wt% of nano-BN, respectively. Scanning electron microscope observations show the presence of nanofillers can improve hydration products and increase interfacial compactness. Energy dispersive spectrometer results suggest that local content of nanofillers in the ITZ is higher than that in the bulk cement mortars. These findings indicate the nanofillers can transfer with water migration toward aggregates and enrich in ITZ, thus improving the bond strength and interfacial microstructures between aggregates and cement mortars through the nano-core effect. / National Science Foundation of China (51978127 and 51578110), and the Fundamental Research Funds for the Central Universities in China(DUT18GJ203)
2

Compressive properties and underlying mechanisms of nickel coated carbon nanotubes modified concrete

Wang, D., Wang, X., Ashour, Ashraf, Qiu, L., Han, B. 02 November 2023 (has links)
No / Nickel coated multi-walled carbon nanotubes (Ni-MWCNTs) having exceptional mechanical properties, thermal conductivity and dispersibility can effectively overlap in cementitious matrix, thus forming an enhanced and thermal conductive network. They are therefore a promising nanofiller for modifying cement and concrete materials. This paper studies the compressive properties of reactive powder concrete (RPC) filled with different aspect ratios of Ni-MWCNTs, including strength, toughness, Young's modulus and Poisson's ratio. It is concluded that the incorporation of 0.06 vol.% Ni-MWCNTs with an aspect ratio of 1500 maximally increases the compressive strength and toughness of RPC by 20.24%/20.39 MPa and 43.89%/56.35 (N·m), respectively. However, Young's modulus and Poisson's ratio of Ni-MWCNTs modified composites do not significantly be improved. Besides, a constitutive model of Ni-MWCNTs reinforced RPC under uniaxial compression is established based on the continuum damage mechanics theory, reasonably predicting the relationship between compressive strength and deformation of composites. The modification mechanism of Ni-MWCNTs is also investigated through the temperature distribution monitoring inside composites, Scanning Electron Microscope (SEM) observation and energy dispersive x-ray spectrometry (EDS) analysis of Ni-MWCNTs reinforced RPC. The thermal conductive network formed by Ni-MWCNTs in matrix reduces the temperature difference and improves the temperature uniformity inside composites, thereby decreasing thermal stresses, primary cracks and defects of composites. Furthermore, the incorporation of Ni-MWCNTs makes the RPC microstructures dense, decreases the average CaO to SiO2 ratio, and inhibits the development of cracks inside RPC, thus achieving effective enhancement to RPC. / National Science Foundation of China (52178188, 51978127 and 51908103), and the Fundamental Research Funds for the Central Universities (DUT21RC(3)039).

Page generated in 0.0868 seconds