• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 610
  • 584
  • 106
  • 73
  • 70
  • 41
  • 21
  • 20
  • 18
  • 14
  • 12
  • 11
  • 9
  • 8
  • 8
  • Tagged with
  • 1843
  • 300
  • 159
  • 157
  • 143
  • 132
  • 120
  • 115
  • 113
  • 106
  • 98
  • 93
  • 89
  • 80
  • 80
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

The international trade dispute over GMO's before the WTO : causes and consequences

Makhoul, Malakhee January 2014 (has links)
The Biotech dispute at WTO received a great deal of attention, and reopened a wide-ranging debate over the benefits of genetically modified organisms (GMOs) and their effects on human health and the environment. The dispute was complex and involved a high level of political sensitivity. It brought attention to procedural and substantive issues in which the roles of science and precaution, and the interrelationship between trade law and international law took centre stage. It raised questions as to the degree of risk acceptable to society, as well as questions regarding the regulation of GMOs in the face of continuing uncertainty about the risks they may pose to human health and the environment. This thesis explores both the conceptual foundations and the legal aspects of this debate. It argues that extending the scope of the SPS Agreement in the manner the Biotech decision did is problematic, and overburdens the EU with demonstrating that its GMO authorisation framework is based on scientific risk assessments and not otherwise disguised restrictions on trade. This thesis also highlights that the conflict surrounding GMOs is not limited to the World Trade Organization. By leaving little room for the application of precautionary approaches and non-scientific factors, the Panel largely failed to recognise the institutional and discursive complexity in which the conflict about GMOs is embedded. The thesis concludes that increased sensitivity of WTO law to environmental and non-scientific factors will reduce the existing tension allowing it to coexist with other international treaties.
52

Effects of massive fields on the early universe

Cespedes, Sebastian January 2019 (has links)
Cosmology is one of the best tools to understand the physics that governs the universe at high energies. On one hand, inflation is a very robust mechanism to explain the initial conditions of the universe. On the other hand general relativity provides a solid framework for the formation of cosmic structures at cosmological scales. Nevertheless, there are still important issues that remain without a clear answer. For example, inflation still lacks of a concrete microphysical description, and also there is still no satisfactory mechanism to explain the late time acceleration of the universe. This thesis addresses these two topics. In the first part we discuss the effects of heavy degrees of freedom coupled to inflation. This has been an important topic over the years, because the experimental success might make it possible to detect new degrees of freedom in inflation. In chapter two we discuss the case when non relativistic heavy fields are coupled to the inflaton through a non minimal gravitational coupling. Here we find that, for certain geometries, the heavy field can modify the potential for a few e-folds, either stopping inflation, or setting its initial conditions. In chapter 3 we study the dynamics of fluctuations in holographic inspired models of multi-field inflation. We find that the entropy mass $\mu$ (the mass of the fluctuation orthogonal to the trajectory of inflation) satisfies an universal upper bound given by $\mu \leq 3 H / 2$. This bound coincides with the requirement of unitarity of conformal operators living on the boundary of the theory. In the second part of the thesis we study high energy effects on the Cosmic Microwave Background (CMB). In the fourth chapter we study the role of disformal transformation on cosmological backgrounds and its relation to the speed of sound for tensor modes. A speed different from one for tensor modes can arise in several contexts such as Galileons theories, or massive gravity. Nevertheless the speed is very constrained to be one by observations of gravitational wave emission. It has been shown that in inflation a disformal transformation allows the speed for tensor modes, to be set to one without making changes to the curvature power spectrum. We show that on the CMB, after doing the transformation, there is an imprint on the acoustic peaks, and the diffusion damping. This has interesting consequences: for a particular class of theories the transformation can be used to constrain the parameter space in different regimes. In chapter five we study the impact of gravitons with non-vanishing masses on the polarisation of th CMB . We also focus on putative modifications to the speed of the gravitational waves. We find that a change of the graviton speed shifts the acoustic peaks of the B-mode polarization and then could be easily constrained. In all cases when both massless and massive gravitons are present, we find that the B-mode CMB spectrum is characterised by a low $l$ plateau together with a shifted position for the first few peaks compared to a massless graviton spectrum. This shift depends on the mixing between the gravitons in their coupling to matter and could serve as a hint in favour of the existence of multiple gravitons.
53

Etude de matériaux d'anodes à base de graphite modifié par des composés fer-soufre : applications aux piles à combustible microbiennes / Study of graphite-based anode materials modified by iron/sulfur compounds : applications to microbial fuel cells

Bouabdalaoui, Laila 16 July 2013 (has links)
Une pile à combustible microbiennes (PCM) est un dispositif capable de produire de l’énergie électrique à partir d’énergie chimique grâce à l’activité catalytique des bactéries en présence de combustibles organiques. Ces travaux de thèse ont eu pour objectif la synthèse des nouveaux matériaux d’anode et de cathode qui pourraient constituer des alternatives aux matériaux à base de platine. Coté anode, nous avons synthétisé des matériaux par précipitation chimique sur du graphite en poudre à partir de mélanges contenant des ions ferreux et sulfures. Les caractérisations physicochimiques ont montré la formation de composés soufrés (mackinawite, polysulfures et soufre élémentaire) qui se transforment en produits soufrés plus oxydés en présence d’air. La formation de vivianite a été confirmée dans le cas d’un excès d’ions ferreux par rapport aux ions sulfures. Les analyses électrochimiques montrent que ces matériaux ont un comportement réversible avec des densités de courant d’oxydation élevées à bas potentiel. Coté cathode, nous avons choisi la synthèse par voie électrochimique d’un film de MnOx sur substrat d’acier inoxydable. Les caractérisations physicochimiques ont démontré la formation de la birnessite. Les analyses électrochimiques montrent que la réduction de ce matériau conduit à des courants cathodiques significatifs mais avec une réversibilité limitée, même en présence d’air. La réalisation de prototypes de PCM dans lesquels l’anode à base de composés soufrés est immergée dans une solution de terreau et la cathode à base de MnOx est au contact de l’air, a permis d’obtenir des puissances instantanées maximales de l’ordre de 12 W.m-3 et 1,8 W.m-2, et des densités de courant de l’ordre de 25 A.m-3 et 3,8 A.m-2. Un travail d’optimisation du fonctionnement de PCM a été réalisé. Ainsi, l’augmentation de la conductivité de la solution anodique et la diminution de quantité de sédiment dans la solution de terreau a permis d’améliorer la réponse électrochimique du matériau anodique et d’obtenir des puissances instantanées maximales de l’ordre de 17,5 W.m-3 et 2,7 W.m-2, et des densités de courant de l’ordre de 60 A.m-3 et 9,2 A.m-2. Le facteur limitant reste toujours le comportement électrochimique du film de MnOx. / A microbial fuel cell (MFC) is a device allowing the production of electric power from chemical energy thanks to the catalytic activity of bacteria in presence of organic fuel. These works aimed the synthesis of new anode and cathode materials which could be an alternative to platinum materials. On the anode side, we synthesized the materials by chemical precipitation on powder graphite from mixtures containing ferrous and sulfide ions. Physicochemical characterizations showed the formation of sulfur compounds (mackinawite, polysulfide and elementary sulfur) which transform into sulfur products more oxidized in presence of air. Formation of vivianite was confirmed in the case of an excess of ferrous ions in relation to sulfide ions. Electrochemical analysis shows that these materials have a reversible behavior with high current densities at low voltage. On the cathode side, we chose electrochemical synthesis of an MnOx film on stainless steel substrate. Physicochemical characterizations showed birnessite formation. Electrochemical analysis show that the reduction of this material Leeds to significative cathodic currents but with a limited reversibility, even in presence of air. The realization of MFC prototypes in which the sulfur compounds-based anode is submerged in compost solution and the MnOx-based cathode is in contact with air, allowed the getting of maximum instantaneous powers on the order of 12 W.m-3 and 1,8 W.m-2, and current densities on the order of 25 A.m-3 et 3,8 A.m-2. An optimization work of the MFC functioning has been done. So, the conductivity increase of the anodic solution and the decrease of sediment quantity in the compost solution allowed the improvement of the electrochemical response of the anodic material and to obtain maximal instantaneous powers on the order of 17,5 W.m-3 and 2,7 W.m-2, and current densities on the order of 60 A.m-3 et 9,2 A.m-2. The limiting factor remains the electrochemical behavior of the MnOx film.
54

Synthesis and Biological Activity of Aminoglycosides and 1,4-Naphthoquinone Derivatives

Yatchang, Marina Fosso 01 December 2012 (has links)
The research described in this dissertation is at the interface of organic chemistry and biology, and it aimed at designing and synthesizing biologically active molecules for the possible development of therapeutic agents. Spinal muscular atrophy is an incurable disease that affects 1 in every 6000 babies, making it the leading genetic cause of infant mortality. While no treatment is available, efforts are being taken to solve this issue. Part of the work outlined in this dissertation was carried out in collaboration with researchers from the University of Missouri to investigate a potential therapeutic for this disease. In addition, the continuous outbreak of diseases caused by bacteria demands for new and improved antibiotics that could help eradicate those pathogens. My research thus allowed me to discover molecules with interesting activity against bacteria for the possible development of potential antibacterial agents. Finally, my research also allowed me to develop potential agro fungicides, which are still very much needed nowadays. Many crop diseases are due to fungal infections,which globally cause enormous economic losses. The use of fungicides is still the main strategy to control these diseases. However, current agro fungicides show some limitations. This is illustrated with Fusarium head blight (FHB), a destructive and costly disease of wheat, barley and other small grains, whose economic losses in the Central United States alone were estimated to $2.7 billion.
55

The BIG ghost

von Strauss, Mikael January 2011 (has links)
In this thesis we present work done in an analysis of models of brane induced gravity. These are higher dimensional generalizations of Einstein's General relativity where our universe is considered as a brane in a higher dimensional bulk and where the gravitational dynamics on the brane is enhanced. This provides a modification of gravity on the brane as compared to ordinary general relativity, primarily at very large distances. These models are therefore very interesting for adressing the cosmological constant problem. Even though the basic setup is natural to consider from the perspective of effective field theory and also follow from certain string theoretical considerations, the models have been plagued by inconsistencies in the form of unstable modes. In particular, a ghostlike and tachyonic scalar mode appears already at the linear level in a perturbative treatment. In order to gain a deeper insight into the nature of these consistency problems we have revisited the models, performing a more extensive analysis of the generic models than has previously been done. We have worked entirely in a gauge invariant formalism in order not to be obscured by gauge issues. We have also incorporated an effective thickness of the brane in our analysis and performed an explicit analysis of the effect of contributions from the extrinsic geometry. Although our analysis has been carried out at the linear level in a perturbative treatment we are able to get a deeper understanding of the unstable mode and illuminate some of the difficulties of these models that would likely persist even in a full nonlinear analysis.
56

Development and application of ferrihydrite-modified diatomite and gypsum for phosphorus control in lakes and reservoirs

Xiong, Wenhui 21 September 2009
A novel phosphorus (P) adsorbent, ferrihydrite-modified diatomite (FHMD) was developed and characterized in this study. The FHMD was made through surface modification treatments, including NaOH treatment and ferrihydrite deposition on raw diatomite. In the NaOH treatment, surface SiO2 was partially dissolved in the NaOH solution. The dissolved Si contributed to form stable 2-line ferrihydrite, which deposited into the larger mesopores and macropores of the diatomite. The 2-line ferrihydrite not only deposited into the pores of the diatomite but also aggregated on the surface. Filling the larger mesopores and macropores of the diatomite and aggregation on the diatomite surface with 0.24 g Fe/g of 2-line ferrihydrite resulted in a specific surface area of 211.1 m2/g for the FHMD, which is an 8.5-fold increase over the raw diatomite (24.77 m2/g). The surface modification also increased the point of zero charge (pHPZC) values to 10 for the FHMD from 5.8 for the raw diatomite.<p> Effects of the formation process parameters such as concentrations of FeCl2, NaOH, and drying temperature on the formation mechanism and crystalline characteristics of FHMD were studied by using X-ray absorption near-edge structure (XANES) spectroscopy. The spectra were recorded in both the total electron yield (TEY) and the fluorescence yield (FY) modes to investigate the chemical nature of Fe and Si on the surface and in the bulk of ferrihydrite-modified diatomite, respectively. It was found that only the surface SiO2 was partially dissolved in the NaOH solution with stirring and heating, whereas the bulk of diatomite seemed to be preserved. The dissolved Si was incorporated into the structure of ferrihydrite to form the 2-line Si-containing ferrihydrite. The crystalline degree of ferrihydrite increased with the increasing FeCl2 concentration and the Brunauer-Emmett-Teller (BET) specific surface area of FHMD decreased with the increasing FeCl2 concentration. The NaOH solution of higher concentration partially dissolved more surface SiO2 and the crystalline degree of ferrihydrite decreased with the increase in NaOH concentration. The dehydroxylation on the surface of FHMD occurred in the high temperature calcination, causing an energy shift in the Si L-edge spectra to the high energy side and an increase in the crystalline degree of ferrihydrite. In this study, the optimal synthesis conditions for the FHMD with the least crystalline degree and the highest surface area were found to be as the follows: 100 mL of 0.5M FeCl2 solution, 6M NaOH solution and the drying temperature of 50 ºC.<p> Phosphorus adsorption behavior and adsorption mechanism of FHMD were investigated in the research. The Langmuir model best described the P adsorption data for FHMD. Because of increased surface area and surface charge, the maximum adsorption capacity of FHMD at pH 4 and pH 8.5 was increased from 10.2 mg P/g and 1.7 mg P/g of raw diatomite to 37.3 mg P/g and 13.6 mg P/g, respectively. Phosphorus showed the best affinity of adsorption onto FHMD among common anions. K-edge P XANES spectra demonstrate that P is not precipitated with Fe (III) of FHMD, but adsorbed on the surface layer of FHMD.<p> Phosphorus removal from lake water and limiting phosphorus release from sediment by FHMD was examined. Phosphorus removal from lake water proceeded primarily through P adsorption onto the surface of FHMD. When a dose of FHMD of 250 mg/L was applied to lake water, a total phosphorus (TP) removal efficiency of 88% was achieved and a residual TP concentration was 17.0 µg/L which falls within the oligotrophic TP range (3.0-17.7 µg/L). FHMD settled down to the bottom of the 43 cm high cylinder within 6 hours, which suggested that retention time of FHMD in the 5.5 m of Jackfish lake water column was close to the equilibrium time of P adsorption onto FHMD (72 hours). During the 30-day anoxic incubation period, TP concentrations in lake water treated by 400, 500 and 600 mg/L of FHMD showed a slight decrease and maximum TP concentrations remained at levels lower than 15 µg/L. The addition of FHMD resulted in a marked increase in Fe-P fraction, a pronounced decrease in labile-P and organic-P fractions, and stable Al-P, Ca-P and residual-P fractions. The effect of FHMD on limiting P release was comparable with those of the combination of FHMD and alum solutions with logarithmic ratios of Al to mobile P of 0.5 and 0.8. FHMD not only can effectively remove P from lake water but also keep a strong P-binding capacity under anoxic conditions and competition for P with alum at high amounts.<p> The role of gypsum on stabilizing sediment and the optimum dose of gypsum were investigated. The effectiveness of gypsum in stabilizing sediment was proved by the fact that at the same agitation speed, turbidities and soluble reactive P (SRP) concentrations of samples treated with gypsum were much lower than those of sample without gypsum. The optimal thickness of the gypsum layer was found to be 0.8 cm.<p> Combined application of FHMD and gypsum to P control was investigated in the research. It was found in the 30-day incubation of lake water and sediment treated by FHMD and gypsum that no P release seemed to occur regardless of oxic or anoxic conditions. In order to investigate the 120-day effects of FHMD and gypsum on the P control under anoxic and agitation conditions a lab-scale artificial aquarium was established in an environmental chamber. Daily oscillation of a metal grid did not yield the sediment resuspension due to the gypsum stabilization. The combined application of FHMD and gypsum resulted in a 1 g/L increase in the SO42- concentration in the 120-day aquarium compared with that in the control aquarium; however it did not affect the total kjeldahl nitrogen (TKN) concentrations in both the control aquarium and the 120-day aquarium. The addition of FHMD and gypsum enhanced total alkalinity in the 120-day aquarium, thereby improving buffering capacity of lake water. Under anoxic conditions and sediment resuspension conditions, relative to a large increase in total P (TP) concentrations in the control aquarium, TP concentrations in the 120-day aquarium stayed relatively stable, fluctuating within the range of 9.1-13.3 µg/L. Relative to control sediment, Fe-P was significantly enhanced during the 60-day incubation; however, Fe-P did not appear to increase significantly in the second 60-day incubation. Labile-P and organic-P decreased with sediment depths in both control aquarium and test aquariums; however, Al-P, Ca-P and residue-P increased with sediment depth. Lower Al-P is observed in treatment aquariums than in control sediment.<p> As an effective P adsorbent, FHMD showed a high adsorption capacity as well as a significantly higher affinity for P than other anions. A combined application of FHMD and gypsum effectively reduced sediment resuspension and maintained TP levels within the oligotrophic range under anoxic conditions in the laboratory-scale artificial aquarium.
57

Study of ink mileage and print through

Håkans, Johanna January 2002 (has links)
This report contains a study of ink mileage, show through and other mechanisms that are important inthe study of substrate printability. These mechanisms have an impact on how ink will react on paper.To develop a substrate that provides good ink mileage and less show through requires a closer studyof substrate characteristics.Substrates with different characteristics have been tested by a technique developed for this projectcalled modified ink mileage. Ink mileage is a method to determine how much ink that is required for acertain target density. Further tests on the same substrates have been done including print throughand surface roughness measurements.
58

Development and application of ferrihydrite-modified diatomite and gypsum for phosphorus control in lakes and reservoirs

Xiong, Wenhui 21 September 2009 (has links)
A novel phosphorus (P) adsorbent, ferrihydrite-modified diatomite (FHMD) was developed and characterized in this study. The FHMD was made through surface modification treatments, including NaOH treatment and ferrihydrite deposition on raw diatomite. In the NaOH treatment, surface SiO2 was partially dissolved in the NaOH solution. The dissolved Si contributed to form stable 2-line ferrihydrite, which deposited into the larger mesopores and macropores of the diatomite. The 2-line ferrihydrite not only deposited into the pores of the diatomite but also aggregated on the surface. Filling the larger mesopores and macropores of the diatomite and aggregation on the diatomite surface with 0.24 g Fe/g of 2-line ferrihydrite resulted in a specific surface area of 211.1 m2/g for the FHMD, which is an 8.5-fold increase over the raw diatomite (24.77 m2/g). The surface modification also increased the point of zero charge (pHPZC) values to 10 for the FHMD from 5.8 for the raw diatomite.<p> Effects of the formation process parameters such as concentrations of FeCl2, NaOH, and drying temperature on the formation mechanism and crystalline characteristics of FHMD were studied by using X-ray absorption near-edge structure (XANES) spectroscopy. The spectra were recorded in both the total electron yield (TEY) and the fluorescence yield (FY) modes to investigate the chemical nature of Fe and Si on the surface and in the bulk of ferrihydrite-modified diatomite, respectively. It was found that only the surface SiO2 was partially dissolved in the NaOH solution with stirring and heating, whereas the bulk of diatomite seemed to be preserved. The dissolved Si was incorporated into the structure of ferrihydrite to form the 2-line Si-containing ferrihydrite. The crystalline degree of ferrihydrite increased with the increasing FeCl2 concentration and the Brunauer-Emmett-Teller (BET) specific surface area of FHMD decreased with the increasing FeCl2 concentration. The NaOH solution of higher concentration partially dissolved more surface SiO2 and the crystalline degree of ferrihydrite decreased with the increase in NaOH concentration. The dehydroxylation on the surface of FHMD occurred in the high temperature calcination, causing an energy shift in the Si L-edge spectra to the high energy side and an increase in the crystalline degree of ferrihydrite. In this study, the optimal synthesis conditions for the FHMD with the least crystalline degree and the highest surface area were found to be as the follows: 100 mL of 0.5M FeCl2 solution, 6M NaOH solution and the drying temperature of 50 ºC.<p> Phosphorus adsorption behavior and adsorption mechanism of FHMD were investigated in the research. The Langmuir model best described the P adsorption data for FHMD. Because of increased surface area and surface charge, the maximum adsorption capacity of FHMD at pH 4 and pH 8.5 was increased from 10.2 mg P/g and 1.7 mg P/g of raw diatomite to 37.3 mg P/g and 13.6 mg P/g, respectively. Phosphorus showed the best affinity of adsorption onto FHMD among common anions. K-edge P XANES spectra demonstrate that P is not precipitated with Fe (III) of FHMD, but adsorbed on the surface layer of FHMD.<p> Phosphorus removal from lake water and limiting phosphorus release from sediment by FHMD was examined. Phosphorus removal from lake water proceeded primarily through P adsorption onto the surface of FHMD. When a dose of FHMD of 250 mg/L was applied to lake water, a total phosphorus (TP) removal efficiency of 88% was achieved and a residual TP concentration was 17.0 µg/L which falls within the oligotrophic TP range (3.0-17.7 µg/L). FHMD settled down to the bottom of the 43 cm high cylinder within 6 hours, which suggested that retention time of FHMD in the 5.5 m of Jackfish lake water column was close to the equilibrium time of P adsorption onto FHMD (72 hours). During the 30-day anoxic incubation period, TP concentrations in lake water treated by 400, 500 and 600 mg/L of FHMD showed a slight decrease and maximum TP concentrations remained at levels lower than 15 µg/L. The addition of FHMD resulted in a marked increase in Fe-P fraction, a pronounced decrease in labile-P and organic-P fractions, and stable Al-P, Ca-P and residual-P fractions. The effect of FHMD on limiting P release was comparable with those of the combination of FHMD and alum solutions with logarithmic ratios of Al to mobile P of 0.5 and 0.8. FHMD not only can effectively remove P from lake water but also keep a strong P-binding capacity under anoxic conditions and competition for P with alum at high amounts.<p> The role of gypsum on stabilizing sediment and the optimum dose of gypsum were investigated. The effectiveness of gypsum in stabilizing sediment was proved by the fact that at the same agitation speed, turbidities and soluble reactive P (SRP) concentrations of samples treated with gypsum were much lower than those of sample without gypsum. The optimal thickness of the gypsum layer was found to be 0.8 cm.<p> Combined application of FHMD and gypsum to P control was investigated in the research. It was found in the 30-day incubation of lake water and sediment treated by FHMD and gypsum that no P release seemed to occur regardless of oxic or anoxic conditions. In order to investigate the 120-day effects of FHMD and gypsum on the P control under anoxic and agitation conditions a lab-scale artificial aquarium was established in an environmental chamber. Daily oscillation of a metal grid did not yield the sediment resuspension due to the gypsum stabilization. The combined application of FHMD and gypsum resulted in a 1 g/L increase in the SO42- concentration in the 120-day aquarium compared with that in the control aquarium; however it did not affect the total kjeldahl nitrogen (TKN) concentrations in both the control aquarium and the 120-day aquarium. The addition of FHMD and gypsum enhanced total alkalinity in the 120-day aquarium, thereby improving buffering capacity of lake water. Under anoxic conditions and sediment resuspension conditions, relative to a large increase in total P (TP) concentrations in the control aquarium, TP concentrations in the 120-day aquarium stayed relatively stable, fluctuating within the range of 9.1-13.3 µg/L. Relative to control sediment, Fe-P was significantly enhanced during the 60-day incubation; however, Fe-P did not appear to increase significantly in the second 60-day incubation. Labile-P and organic-P decreased with sediment depths in both control aquarium and test aquariums; however, Al-P, Ca-P and residue-P increased with sediment depth. Lower Al-P is observed in treatment aquariums than in control sediment.<p> As an effective P adsorbent, FHMD showed a high adsorption capacity as well as a significantly higher affinity for P than other anions. A combined application of FHMD and gypsum effectively reduced sediment resuspension and maintained TP levels within the oligotrophic range under anoxic conditions in the laboratory-scale artificial aquarium.
59

Bilinear Second Order Integral Bandpass Filter

Lai, Kai-hsin 25 January 2011 (has links)
Traditional transfer function of integrators have warping effect in high frequency, this isn¡¦t good for make filter circuit. In reference[3] they mention a new transfer function to improve this error, but we found that the design of the previous circuit doesn¡¦t conform to the new transfer function. In this thesis, a different structure of integrator is presented, it use the method of double sampling to realize the modified bilinear transfer function, in addition, we also add a grounded-gate amplifier to decrease the input impedance and dummy switch technique what can reduce the charge injection error, then we use the central circuit to make the second order bandpass filter. The proposed circuit employ Hspice to simulate and design the form of the circuit layout, then use TSMC 0.35£gm CMOS process to make chip. The sampling frequency is 10MHz, the central frequency is 1MHz, and the power consumption is 1.78mW.
60

Performance analysis of snr estimates for awgn and time-selective fading channels

Peksen, Huseyin 15 May 2009 (has links)
In this work, first the Cramer-Rao lower bound (CRLB) of the signal-to-noise ratio (SNR) estimate for binary phase shift keying (BPSK) modulated signals in additive white Gaussian noise (AWGN) channels is derived. All the steps and results of this CRLB derivation are shown in a detailed manner. Two major estimation scenarios are considered herein: the non-data-aided (NDA) and data-aided (DA) frameworks, respectively. The non-data-aided scenario does not assume the periodic transmission of known data symbols (pilots) to limit the system throughput, while the data-aided scenario assumes the transmission of known transmit data symbols or training sequences to estimate the channel parameters. The Cramer-Rao lower bounds for the non-data-aided and data-aided scenarios are derived. In addition, the modified Cramer-Rao lower bound (MCRLB) is also calculated and compared to the true CRLBs. It is shown that in the low SNR regime the true CRLB is tighter than the MCRLB in the non-data-aided estimation scenario. Second, the Bayesian Cramer-Rao lower bound (BCRLB) for SNR estimate is considered for BPSK modulated signals in the presence of time-selective fading channels. Only the data-aided scenario is considered, and the time-selective fading channel is modeled by means of a polynomial function. A BCRLB on the variance of the SNR estimate is found and the simulation results are presented.

Page generated in 0.1821 seconds