Spelling suggestions: "subject:"codified kortewegde tries equation"" "subject:"codified kortewegde vries equation""
1 |
Existence and Stability of Periodic Waves in the Fractional Korteweg-de Vries Type EquationsLe, Uyen January 2021 (has links)
This thesis is concerned with the existence and spectral stability of periodic
waves in the fractional Korteweg-de Vries (KdV) equation and the fractional
modified Korteweg-de Vries (mKdV) equation. We study the existence of
periodic travelling waves using various tools such as Green's function for fractional
Laplacian operator, Petviashvili fixed point method, and a new variational
characterization in which the periodic waves in fractional KdV and
fractional mKdV are realized as the constrained minimizers of the quadratic
part of the energy functional subject to fixed L3 and L4 norm respectively.
This new variational framework allows us to identify the existence region of
periodic travelling waves and to derive the criterion for spectral stability of
the periodic waves with respect to perturbations of the same period. / Thesis / Doctor of Philosophy (PhD)
|
2 |
Equações dispersivas : estabilidade orbital de ondas viajantes perióricas / Dispersive equations : orbital stability of periodic traveling wavesAndrade, Thiago Pinguello de, 1985- 09 August 2014 (has links)
Orientador: Ademir Pastor Ferreira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T19:57:48Z (GMT). No. of bitstreams: 1
Andrade_ThiagoPinguellode_D.pdf: 2608603 bytes, checksum: 20935cf463b03d1c5c1390b127a42f4f (MD5)
Previous issue date: 2014 / Resumo: Nesta tese estudamos estabilidade orbital de ondas viajantes periódicas para modelos dispersivos. O estudo de ondas viajantes iniciou-se em meados do século XVIII quando John S. Russell estabeleceu que ondas de água em um canal raso possui evolução constante. A estratégia geral para se obter a estabilidade consiste em provar que a onda viajante em questão minimiza um funcional conservado restrito a uma certa variedade. No nosso contexto, seguindo tais ideias, minimizamos o funcional restrito a uma nova variedade. Embora acreditamos que a teoria possa ser aplicada a outros modelos, nos restringimos às equações de Benjamin-Bona-Mahony (BBM) com termo não linear fracionário e Korteweg-de Vries modificada (mKdV). Além disso, resultados similares para a equação de Gardner são obtidos, usando uma estreita relação que esta possui com a mKdV / Abstract: In this thesis we study the orbital stability of periodic traveling waves for dispersive models. The study of traveling waves started in the mid-18th century when John S. Russel established that the flow of water waves in a shallow channel has constant evolution. The general strategy to obtain stability consists in proving that the traveling wave in question minimizes a conserved functional restricted to a certain manifold. In our context, following such ideas, we minimize such a functional restricted to a new manifold. Although we believe our theory can be applied to other models, we deal with the Benjamin-Bona-Mahony (BBM) equation with fractional nonlinear terms and modified Korteweg-de Vries (mKdV) equation. Besides, similar stability results for the Gardner equation are obtained, using a close relation between this equation and the mKdV / Doutorado / Matematica / Doutor em Matemática
|
Page generated in 0.0841 seconds