Spelling suggestions: "subject:"amodules différentiel"" "subject:"amodules différentielles""
1 |
Singularités lagrangiennesSevenheck, Christian 27 January 2003 (has links) (PDF)
Dans cette thèse, nous développons une théorie de<br />déformation pour les singularités lagrangiennes. Pour une singularité<br />lagrangienne, un complexe de modules à différentielle non-linéaire,<br />dont la première cohomologie est isomorphe à l'espace de déformations<br /> infinitésimales de la singularité, est défini. La cohomologie en degré deux contient des informations sur les obstructions. Ce<br />complexe est relié à la théorie des modules différentiels. Nous<br />démontrons que, sous une condition géométrique, sa cohomologie est<br />constituée de faisceaux constructibles. Nous décrivons une méthode<br />utilisant du calcul formel pour déterminer cette cohomologie pour<br />des surfaces quasi-homogènes.
|
2 |
About E-infinity-structures in L-algebras / Sur les E-infini-structures dans les L-algèbresSánchez, Jesús 06 December 2016 (has links)
Dans cette thèse nous rappelons la notion de L-algèbre, qui a pour objet d'être un modèle algébrique des types d'homotopie. L'objectif principal de cette thèse est la description d'une structure de E-infini-coalgèbre sur l'élément principal d'une L-algèbre. Ceci peut être vu comme une généralisation de la structure de E-infini-coalgèbre sur le complexe des chaînes d'un ensemble simplicial, telle que décrite par Smith dans Iterating the cobar construction, 1994. Nous construisons une E-infini-opérade, notée K, utilisée pour construire la E-infini-coalgèbre sur l'élément principal d'une L-algèbre. Cette structure de E-infini-coalgèbre montre que la L-algèbre canoniquement associée à un ensemble simplicial contient au moins autant d'information homotopique que la E-infini-coalgèbre couramment associée à un ensemble simplicial / In this thesis we recall the notion of L-algebra. L-algebras are intended as algebraic models for homotopy types. L-algebras were introduced by Alain Prouté in several talks since the eighties. The principal objective of this thesis is the description of an E-infinity-coalgebra structure on the main element of an L-algebra. This can be seen as a generalization of the E-infinity-coalgebra structure on the chain complex associated to a simplicial set given by Smith in Iterating the cobar construction, 1994. We construct an E-inifity-operad, denoted K, used to construct the E-inifity-coalgebra on the main element of a L-algebra. This E-inifity-coalgebra structure shows that the canonical L-algebra associated to a simplicial set contains at least as much homotopy information as the E-inifity-coalgebras usually associated to simplicial sets.
|
Page generated in 0.0836 seconds