Spelling suggestions: "subject:"moduli space"" "subject:"moduli apace""
11 |
Arithmetic Properties of Moduli Spaces and Topological String Partition Functions of Some Calabi-Yau ThreefoldsZhou, Jie 06 June 2014 (has links)
This thesis studies certain aspects of the global properties, including geometric and arithmetic, of the moduli spaces of complex structures of some special Calabi-Yau threefolds (B-model), and of the corresponding topological string partition functions defined from them which are closely related to the generating functions of Gromov-Witten invariants of their mirror Calabi-Yau threefolds (A-model) by the mirror symmetry conjecture. / Mathematics
|
12 |
Application of Bridgeland stability to the geometry of abelian surfacesAlagal, Wafa Abdullah January 2016 (has links)
A key property of projective varieties is the very ampleness of line bundles as this provides embeddings into projective space and allows us to express the variety in equational terms. In this thesis we study the general version of this property which is k- very ampleness of line bundles. We introduce the notation of critical k-very ampleness and compute it for abelian surfaces. The property of k-very ampleness is usually discussed using tools from divisor theory but we take a different approach and use methods from derived algebraic geometry as part of program to use properties of the derived category of a variety to access the geometry of the variety. In particular, we use the Fourier-Mukai transform, moduli spaces of sheaves and properties of Bridgeland stability. We compute walls for certain Bridgeland stable spaces and certain Chern characters and to complete the picture we study the moduli spaces of torsion sheaves with minimal first Chern class and we go on to compute the walls for these as well building on tools developed earlier in the thesis.
|
13 |
Cohomology of the moduli space of curves of genus three with level two structureBergvall, Olof January 2014 (has links)
In this thesis we investigate the moduli space M3[2] of curves of genus 3 equipped with a symplectic level 2 structure. In particular, we are interested in the cohomology of this space. We obtain cohomological information by decomposing M3[2] into a disjoint union of two natural subspaces, Q[2] and H3[2], and then making S7- resp. S8-equivariantpoint counts of each of these spaces separately. / Målet med denna uppsats är att undersöka modulirummet M3[2] av kurvor av genus 3 med symplektisk nivå 2 struktur. Mer specifikt vill vi hitta informationom kohomologin av detta rum. För att uppnå detta delar vi först upp M[2] i en disjunkt union av två naturliga delrum, Q[2] och H3[2], och räknar därefter punkterna av dessa rum S7- respektive S8-ekvivariant.
|
14 |
Cohomology of the moduli space of curves of genus three with level two structureBergvall, Olof January 2014 (has links)
In this thesis we investigate the moduli space M3[2] of curves of genus 3 equipped with a symplectic level 2 structure. In particular, we are interested in the cohomology of this space. We obtain cohomological information by decomposing M3[2] into a disjoint union of two natural subspaces, Q[2] and H3[2], and then making S7- resp. S8-equivariantpoint counts of each of these spaces separately. / Målet med denna uppsats är att undersöka modulirummet M3[2] av kurvor av genus 3 med symplektisk nivå 2 struktur. Mer specifikt vill vi hitta informationom kohomologin av detta rum. För att uppnå detta delar vi först upp M[2] i en disjunkt union av två naturliga delrum, Q[2] och H3[2], och räknar därefter punkterna av dessa rum S7- respektive S8-ekvivariant.
|
15 |
The Moduli Space of Polynomial Maps and Their Fixed-Point Multipliers / 多項式写像のモジュライ空間とその固定点における微分係数Sugiyama, Toshi 23 July 2018 (has links)
京都大学 / 0048 / 新制・論文博士 / 博士(理学) / 乙第13201号 / 論理博第1560号 / 新制||理||1635(附属図書館) / 京都大学大学院理学研究科数学・数理解析専攻 / (主査)教授 宍倉 光広, 教授 泉 正己, 教授 國府 寛司 / 学位規則第4条第2項該当 / Doctor of Science / Kyoto University / DFAM
|
16 |
Instanton Counting, Matrix Models, and CharactersTamagni, Spencer 01 January 2022 (has links)
In this thesis we study symmetries of quantum field theory visible only at the non-perturbative level, which arise from large deformations of the integration contour in the path integral. We exposit the recently-developed theory of qq-characters that organizes such symmetries in the case of N = 2 supersymmetric gauge theories in four dimensions. We sketch the physical origin of such observables from intersecting branes in string theory, and the mathematical origin as certainequivariant integrals over Nakajima quiver varieties. We explain some of the main applications, including the derivation of Seiberg-Witten geometry for quiver gauge theories and the relations to quantum integrable systems.
|
17 |
Geometric classification of 4d rank-1 N=2 superconformal field theoriesLotito, Matteo 29 October 2018 (has links)
No description available.
|
18 |
Review of compact spaces for type IIA/IIB theories and generalised fluxesDaniel, Panizo January 2019 (has links)
In the present project we study compactifications of type IIA/IIB string theories on toroidal orbifolds. We present the moduli space for N=1 four-dimensional reductions and its topological properties. To fix the value of all moduli, we will construct the most general holomorphic superpotential W using a set of T-dual iterations for the fluxes. Using a 3-torus toy-model, we will give an introductory description to the background of these generalised fluxes.
|
19 |
Feuilletage isopériodique de l'espace de modules des surfaces de translation / Isoperiodic foliation on moduli space of translation surfacesYgouf, Florent 27 June 2019 (has links)
Les strates de l'espace de modules des di__erentielles ab_eliennes sont naturellementmunies d'un feuilletage holomorphe, appel_e feuilletage isop_eriodique (ou feuilletagesdes p_eriodes aboslues, ou encore feuilletage du noyau). Celui-ci a _et_e introduit il y a25 ans, d'abord par A. Eskin et M. Kontsevitch, puis par K. Calta et C. McMullenavant de devenir un objet important en dynamique de Teichmuller. La questiong_en_erale abord_ee dans ce texte est la suivante :Comment les feuilles du feuilletage isop_eriodique se r_epartissent-ellesdans l'espace de module ?McMullen a d_emontr_e l'ergodicit_e du feuilletage dans les strates principales (o_u toutesles singularit_es sont simples) en genre 2 et 3 en utilisant des techniques issue dela dynamique homog_ene. Calsamiglia, Deroin & Francaviglia ont ensuite _etenduce resulat et obtenu une classi_cation _a la Ratner des ensembles ferm_es satur_espar le feuilletage. Simultan_ement, Hamenstadt a fourni une preuve alternative del'ergodicit_e, toujours dans la strate principale. De fa_con _etonnante, le seul r_esulatconnu pour les autres strates est d^u _a P. Hooper et B. Weiss : les feuilles des surfacesde Arnoux-Yoccoz sont denses dans les strates qui les contiennent.La question de la dynamique du feuilletage isop_eriodique peut ^etre formul_ee dansle contexte plus g_en_eral des sous vari_et_es a_nes. Avila, Eskin et Moller ont prouv_eque la codimension des feuilles est alors paire. Le cas de la codimension 2, ou rang1, est d_ej_a riche. Nous _etablissons un cri_ete de densit_e des feuilles et l'appliquons_a di__erentes familles de vari_et_es a_nes de rang 1. Parmi celles-la, les lieux Prymoccupent une place importante. Nous d_emontrons dans ce cadre que les feuilles sontsoit ferm_ees, soit denses, en fonction de l'artithm_eticit_e du lieu. Dans le cas nonarithm_etique, nous prouvons que le feuilletage est ergodique pour la mesure a_neassoci_ee. Cela aboutit _a la d_ecouverte de nouvelles feuilles denses dans des strates _asingularit_es multiples. Ces r_esultats sugg_erent une connection entre la g_eometrie desvari_et_es a_nes et la dynamique isop_eriodique. L'exploitation de cette connection engenre 3 aboutit _a la classi_cation des vari_et_es a_nes non arithm_etiques ne provenantpas d'orbites ferm_ees dans les strates _a deux singularit_es. / The strata of the moduli space of abelian di_erentials are endowed with a naturalholomorphic foliation, known as the isoperiodic foliation (or absolute period foliationor kernel foliation). It has been introduced 25 years ago by A. Eskin and M. Kontsevichand later by K. Calta and C. McMullen before it became a central object inTeichmuller dynamics. The general question addressed in this text is the following:How do the leaves of the isoperiodic foliation wander around in themoduli space ?McMullen proved the ergodicity of the foliation in the principal stratum (where thesingularities of the abelian di_erentials are all simple) in genus 2 and 3 using resultsfrom group actions on homogeneous space. Calsamiglia, Deroin & Francavigliageneralized this result in higher genera and obtained a Ratner-like classi_cation ofthe closed saturated subsets. Simultaneously, Hamenstadt gave an alternative proofof the ergodicity. Surprisingly enough, for the strata where at least one zero isnot simple, the only result available was due to Hooper and Weiss: the leaf of theArnoux-Yoccoz surface is dense in the stratum in which it belongs.The question of the dynamics of the isoperiodic foliation can be rephrased in the moregeneral context of a_ne manifolds. Avila, Eskin, M^oller proved that the codimensionof the leaves is even. The codimension 2 case, also known as rank 1, already displaysa rich and contrasted picture. We give a criterion for density of the leaves, and applyit to di_erent families of rank one a_ne manifolds. Among those, special attention isdedicated to the Prym eigenform loci. We prove that the leaves are either compactor dense, depending on the arithmeticity of the locus. In the non arithmetic case, weprove that the foliation is ergodic with respect to the a_ne measure. In turn, thisgives new examples of dense leaves in strata where at least one of the singularity isnot simple. The aforementioned results suggest a connection between the dynamicsof the isoperiodic foliation and the geometry of a_ne manifolds. This connection isanalyzed in genus 3 and results in a classi_cation of the proper non arithmetic a_nemanifolds in strata with 2 singularities.
|
20 |
Espaço de moduli das configurações de desarguesDantas, Divane Aparecida de Moraes 08 March 2012 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-06-08T15:28:34Z
No. of bitstreams: 1
divaneaparecidademoraesdantas.pdf: 855862 bytes, checksum: e55bbef7c7060caa2ff49488eb611852 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-07-13T13:29:55Z (GMT) No. of bitstreams: 1
divaneaparecidademoraesdantas.pdf: 855862 bytes, checksum: e55bbef7c7060caa2ff49488eb611852 (MD5) / Made available in DSpace on 2016-07-13T13:29:55Z (GMT). No. of bitstreams: 1
divaneaparecidademoraesdantas.pdf: 855862 bytes, checksum: e55bbef7c7060caa2ff49488eb611852 (MD5)
Previous issue date: 2012-03-08 / O principal objetivo do trabalho é estudar os Espaços de Moduli das Configurações de
Desargues, e este estudo é baseado no artigo (AVRITZER; LANGE, 2002). Uma configuração de
10 pontos e 10 retas, chamada uma configuração 103,obtidas do clássico teorema de Desargues,
é chamada uma configuração de Desargues. Muitos espaços de moduli, senão todos, são obtidos
algebricamente através das variedades algébricas de quociente, por isso estudamos um pouco
de Teoria Geométrica dos Invariantes, ações de grupos algébricos em variedades algébricas e
mostramos que existe o quociente categórico de uma variedade algébrica X por um grupo finito
G e quando ele é o espaço e moduli grosso. Além disso mostramos que quando a variedade
algébrica é afim (resp. quase projetiva) o quociente categórico é uma variedade algébrica afim
(resp. quase projetiva). Finalmente, provamos que o quociente categórico(MD,p) de ˇP3 pelo
grupo finito S5 é o espaço de moduli grosso para as configurações de Desargues. / The main aim of this work is to study the moduli space of Desargues configurations and it
was based in (AVRITZER; LANGE, 2002). A configurations of 10 points and 10 line of the classic
Desargues Theorem is called a Desargues configuration. Many moduli spaces, if not all, are
obtained algebraically through the quotient of algebraic varieties. So we have studied a little
about Geometric Invariant Theory and actions of algebraic group on varieties. We have showed
that there exist the categorical quotient of a algebraic variety X by a finite algebraic group G
and that it is a coarse moduli space. Moreover, we have showed that if X is a affine (resp.
quasi-projective) the categorical quotient is an affine (resp. quasi-projective) variety Finally,
we proved that the categorical quotient (MD,p) of the ˇP3 by the algebraic group finite S5 is the
moduli space coarse for the Desargues configurations.
|
Page generated in 0.0384 seconds