Spelling suggestions: "subject:"modulos"" "subject:"odulos""
1 |
O Teorema de Nichols-ZöellerSilva, Leonardo Duarte January 2016 (has links)
Este trabalho tem por objetivo estudar todos os pré-requisitos e demonstrar o Teorema de Nichols-Zöeller. Para isso é realizado um estudo preliminar em tópicos selecionados da Teoria de Anéis e Módulos, visando o Teorema de Krull-Schmidt, e também da Teoria de Álgebras de Hopf, principalmente os resultados para dimensão finita. / The purpose of this work is to study all prerequisites and to prove the Nichols-Zöeller Theorem. For this we conducted a preliminary study on selected topics of Module and Ring Theory, aiming at the Krull-Schmidt Theorem, and also Hopf Algebras Theory, specially results for nite-dimensional case.
|
2 |
Um estudo experimental sobre a eficacia de modulos na aprendizagem de matematicaFilomeno, Antonio January 1975 (has links)
Dissertação (mestrado) - Pontificia Universidade Catolica do Rio de Janeiro, Departamento de Educação / Made available in DSpace on 2012-10-15T19:33:23Z (GMT). No. of bitstreams: 0
|
3 |
Anéis e módulos distributivosJung, Josué Huff January 2005 (has links)
Este trabalho tem por objetivo apresentar resultados sobre módulos e anéis distributivos. Vamos estudar a classe dos módulos distributivos, algumas de suas caracterizações e propriedades mais importantes. Concluiremos o trabalho com dois teoremas centrais. O primeiro deles trata da relação existente entre domínios distributivos e domínios de cadeia. O segundo teorema nos fornece um resultado importante sobre o radical primo de um anel distributivo à direita satisfazendo as condições de cadeia sobre os anuladores principais à direita.
|
4 |
Sobre anéis e módulos distributivosDalla Vecchia, Rodrigo January 2005 (has links)
Este trabalho tem por objetivo apresentar resultados sobre módulos e anéis distributivos. Trataremos de algumas caracterizações e propriedades desta classe de módulos. O teorema principal nos dá uma caracterização sobre módulos e anéis distributivos através de seus submódulos e ideais saturados. / This work has for objective to present resulted on modules and distributive rings. We will deal with some characterizations and properties of this class of modules. The main theorem in gives to a characterization on modules and distributive rings through of its saturated submodules and ideals to them.
|
5 |
O Teorema de Nichols-ZöellerSilva, Leonardo Duarte January 2016 (has links)
Este trabalho tem por objetivo estudar todos os pré-requisitos e demonstrar o Teorema de Nichols-Zöeller. Para isso é realizado um estudo preliminar em tópicos selecionados da Teoria de Anéis e Módulos, visando o Teorema de Krull-Schmidt, e também da Teoria de Álgebras de Hopf, principalmente os resultados para dimensão finita. / The purpose of this work is to study all prerequisites and to prove the Nichols-Zöeller Theorem. For this we conducted a preliminary study on selected topics of Module and Ring Theory, aiming at the Krull-Schmidt Theorem, and also Hopf Algebras Theory, specially results for nite-dimensional case.
|
6 |
Sobre produtos cruzados e equivalência de MoritaUggioni, Bruno Brogni January 2013 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Matemática Pura e Aplicada, Florianópolis, 2013 / Made available in DSpace on 2013-07-16T21:07:35Z (GMT). No. of bitstreams: 1
316856.pdf: 554921 bytes, checksum: 95ab3e3185f35cd80e7801fe50cf1357 (MD5) / Nesse trabalho estudamos a teoria de equivalência de Morita-Rieffel para álgebra de operadores por uma perspectiva geral e a aplicamos para entender produtos cruzados para ações de grupos compactos em C*-álgebras. Nós apresentamos quatro formas diferentes para especificar um contexto de equivalência de Morita entre C*-álgebras e consideramos alguns exemplos conhecidos para ilustrá-la.
A C*-álgebra produto cruzado A×?G proveniente de um sistema dinâmico (A,G,?) é definida como o completamento de Cc(G,A) com respeito a uma certa norma universal naturalmente associada ao sistema dinâmico. Mostramos que as representações do produto cruzado estão em correspondência biunívoca com as representações covariantes do sistema. A teoria de representações da $C^*$-álgebra produto cruzado caracateriza-a, à menos de isomorfismo, mas é geralmente difícil de calculá-la explicitamente. Nosso objetivo principal, nessa direção, é apresentar alguns teoremas de equivalência de Morita que nos permitirão entender produtos cruzados a menos de equivalência de Morita em casos especiais. Em particular, mostramos que o produto cruzado A×?G em que ? é ação de um grupo compacto G sobre uma C*-álgebra A é Morita equivalente à álgebra de ponto fixo AG se a ação for saturada. Aplicamos, após, esse contexto de equivalência de Morita para provar o Teorema Simétrico de Imprimitividade para ações saturadas de grupos compactos que relaciona, via uma equivalência de Morita, os produtos cruzados para ações comutativas de dois grupos compactos.<br> / Abstract : In this work we study operator algebra Morita-Rieffel equivalence from a general perspective and apply it to the understanding of crossed products for actions of compact groups on C*-algebras. We present four different forms to specify a Morita equivalence context between C*-algebras and consider some standard examples to illustrate it. The crossed product C*-algebra A×?G attached to a dynamical system (A,G,?) is defined as the completion of Cc(G,A) with respect to a certain universal norm naturally associated to the dynamical system. The representations of the crossed product are shown to be in bijective correspondence with covariant representations of the system. The representation theory of the crossed product C*-algebra characterizes it up to isomorphism, but it is generally difficult to compute it explicitly. Our main goal is this direction is to present some Morita equivalence theorems that enable us to understand crossed products up to Morita equivalence in certain special cases. In particular we show that the crossed product A×?G for an action of a compact group G on a C*-algebra A is Morita equivalent to the fixed point algebra AG provided the action is saturated. We then apply this Morita equivalence context to prove the Symmetric Imprimitivity Theorem for saturated compact group actions which relates, via a Morita equivalence, the crossed products of commuting actions by two compact groups.
|
7 |
Sobre anéis e módulos distributivosDalla Vecchia, Rodrigo January 2005 (has links)
Este trabalho tem por objetivo apresentar resultados sobre módulos e anéis distributivos. Trataremos de algumas caracterizações e propriedades desta classe de módulos. O teorema principal nos dá uma caracterização sobre módulos e anéis distributivos através de seus submódulos e ideais saturados. / This work has for objective to present resulted on modules and distributive rings. We will deal with some characterizations and properties of this class of modules. The main theorem in gives to a characterization on modules and distributive rings through of its saturated submodules and ideals to them.
|
8 |
Anéis e módulos distributivosJung, Josué Huff January 2005 (has links)
Este trabalho tem por objetivo apresentar resultados sobre módulos e anéis distributivos. Vamos estudar a classe dos módulos distributivos, algumas de suas caracterizações e propriedades mais importantes. Concluiremos o trabalho com dois teoremas centrais. O primeiro deles trata da relação existente entre domínios distributivos e domínios de cadeia. O segundo teorema nos fornece um resultado importante sobre o radical primo de um anel distributivo à direita satisfazendo as condições de cadeia sobre os anuladores principais à direita.
|
9 |
O Teorema de Nichols-ZöellerSilva, Leonardo Duarte January 2016 (has links)
Este trabalho tem por objetivo estudar todos os pré-requisitos e demonstrar o Teorema de Nichols-Zöeller. Para isso é realizado um estudo preliminar em tópicos selecionados da Teoria de Anéis e Módulos, visando o Teorema de Krull-Schmidt, e também da Teoria de Álgebras de Hopf, principalmente os resultados para dimensão finita. / The purpose of this work is to study all prerequisites and to prove the Nichols-Zöeller Theorem. For this we conducted a preliminary study on selected topics of Module and Ring Theory, aiming at the Krull-Schmidt Theorem, and also Hopf Algebras Theory, specially results for nite-dimensional case.
|
10 |
Anéis e módulos distributivosJung, Josué Huff January 2005 (has links)
Este trabalho tem por objetivo apresentar resultados sobre módulos e anéis distributivos. Vamos estudar a classe dos módulos distributivos, algumas de suas caracterizações e propriedades mais importantes. Concluiremos o trabalho com dois teoremas centrais. O primeiro deles trata da relação existente entre domínios distributivos e domínios de cadeia. O segundo teorema nos fornece um resultado importante sobre o radical primo de um anel distributivo à direita satisfazendo as condições de cadeia sobre os anuladores principais à direita.
|
Page generated in 0.0319 seconds