• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ERC Accumulation and Premature Aging: An Investigation of the Deletion of ASH1 in the Budding Yeast Saccharomyces cerevisiae

Basa, Ranor C B 01 January 2006 (has links)
This thesis concerns the asymmetric mechanism by which the "molecular aging clock" is reset in the budding yeast Saccharomyces cerevisiae, which is of great interest considering that many organisms' cells--including human stem cells--undergo this process. When yeast divides, it ages a generation, while daughter cells begin life at generation zero. One theory surrounding this process in yeast is the extrachromosomal rDNA circle (ERC) aging theory. ERCs are generated spontaneously in mother cells as they age, and thus accumulate exponentially in older cells. Daughter cells from young mothers benefit from asymmetric aging, but as mothers age, they produce daughters that prematurely senesce. Studies suggested that ERCs may be a cytoplasmic senescence factor that is passed from mother to daughter as the mother ages, possibly due to the mother's inability to maintain cellular pathways responsible for asymmetric processes as she ages. ASH1 is a gene that encodes an asymmetrically-distributed protein that halts expression of HO endonuclease--an enzyme critical to mating-type switch--in daughter cells. Previous studies in our lab showed that deleting ASH1 led to a decrease in daughter lifespan compared to wild-type strains. In this thesis, I present evidence of a possible connection between ASH1 and cell cycle regulation. Furthermore, the detection of ERC accumulation via Southern blotting in the mutant ASH1 strain, but not the wild-type strain, provides support that ERCs may be a senescence factor in yeast. Lastly, preliminary microarray analysis reveals several genes related to cell cycle regulation being affected by the deletion of ASH1.
2

Investigation of age-related protein changes in the human lens by quasi-elastic light scattering

Sarangi, Srikant 28 October 2015 (has links)
The health and viability of cells and tissues in the human body depend on the functional integrity of proteins. A small number of long-lived proteins, including the crystallins in the lens of the eye, evade protein turnover, a typical cellular mechanism for repair and regeneration, and remain extant throughout life. The cumulative effect of post-translational modifications on the structure, function, and conformation of these long-lived proteins records the history of molecular aging in an individual. Along with absence of protein turnover, the optical accessibility, transparency, and age-related spatial order make the lens an ideal target for in vivo assessment of molecular aging. Accordingly, this doctoral thesis investigated the hypothesis that age-related perturbations that alter the protein environment in the human lens can be detected and monitored as a quantitative biomarker of molecular aging detectable by quasi-elastic light scattering (QLS). To test this hypothesis, QLS was applied in vitro and in vivo to study time-dependent changes in lens proteins. Water-soluble human lens protein extract was used in vitro as a model system that mimics the lens fiber cell cytoplasm. The effects of long-term incubation (nearly one year, proxy for aging), oxidative stress, ionizing radiation, metal-protein and pathogenic protein-protein interactions were investigated by QLS as a function of time. In vitro results were validated by protein gel electrophoresis and transmission electron microscopy. In vivo, age-dependent changes in lens proteins were assessed in healthy subjects across a broad age-range (5–61 years of age). Pathogenic protein aggregation in the lens was examined in vivo using Down syndrome (DS) subjects, a common chromosomal disease associated with an age-related Alzheimer’s disease (AD)-linked lens phenotype. Results obtained from the in vitro studies noted, for the first time, QLS detection of long-term supramolecular changes in a complex lens protein model system. Our FDA-approved QLS device was successful in assessing age-dependent lens protein changes in a clinical study at Boston Children’s Hospital (BCH). In two landmark studies conducted at BCH, we detected statistically significant AD-related lens protein changes in DS subjects aged 10–20 years, when compared with age-matched controls. These studies are the first clinical application of QLS in DS, and demonstrate protein changes in DS earlier than any previously reported studies. Due to the discrepancy in chronological and biological age and the lack of an objective index for the latter, we propose the application of QLS in the human lens as a quantitative biomarker of molecular aging.
3

Theory of mRNA degradation

Deneke, Carlus January 2012 (has links)
One of the central themes of biology is to understand how individual cells achieve a high fidelity in gene expression. Each cell needs to ensure accurate protein levels for its proper functioning and its capability to proliferate. Therefore, complex regulatory mechanisms have evolved in order to render the expression of each gene dependent on the expression level of (all) other genes. Regulation can occur at different stages within the framework of the central dogma of molecular biology. One very effective and relatively direct mechanism concerns the regulation of the stability of mRNAs. All organisms have evolved diverse and powerful mechanisms to achieve this. In order to better comprehend the regulation in living cells, biochemists have studied specific degradation mechanisms in detail. In addition to that, modern high-throughput techniques allow to obtain quantitative data on a global scale by parallel analysis of the decay patterns of many different mRNAs from different genes. In previous studies, the interpretation of these mRNA decay experiments relied on a simple theoretical description based on an exponential decay. However, this does not account for the complexity of the responsible mechanisms and, as a consequence, the exponential decay is often not in agreement with the experimental decay patterns. We have developed an improved and more general theory of mRNA degradation which provides a general framework of mRNA expression and allows describing specific degradation mechanisms. We have made an attempt to provide detailed models for the regulation in different organisms. In the yeast S. cerevisiae, different degradation pathways are known to compete and furthermore most of them rely on the biochemical modification of mRNA molecules. In bacteria such as E. coli, degradation proceeds primarily endonucleolytically, i.e. it is governed by the initial cleavage within the coding region. In addition, it is often coupled to the level of maturity and the size of the polysome of an mRNA. Both for S. cerevisiae and E. coli, our descriptions lead to a considerable improvement of the interpretation of experimental data. The general outcome is that the degradation of mRNA must be described by an age-dependent degradation rate, which can be interpreted as a consequence of molecular aging of mRNAs. Within our theory, we find adequate ways to address this much debated topic from a theoretical perspective. The improvements of the understanding of mRNA degradation can be readily applied to further comprehend the mRNA expression under different internal or environmental conditions such as after the induction of transcription or stress application. Also, the role of mRNA decay can be assessed in the context of translation and protein synthesis. The ultimate goal in understanding gene regulation mediated by mRNA stability will be to identify the relevance and biological function of different mechanisms. Once more quantitative data will become available, our description allows to elaborate the role of each mechanism by devising a suitable model. / Ein zentrales Ziel der modernen Biologie ist es, ein umfassendes Verständnis der Genexpression zu erlangen. Die fundamentalen Prozesse sind im zentralen Dogma der Genexpression zusammengefasst: Die genetische Information wird von DNA in Boten-RNAs (mRNA) transkribiert und im Prozess der Translation von mRNA in Proteine übersetzt. Zum Erhalt ihrer Funktionalität und der Möglichkeit von Wachstum und Fortpflanzung muss in jeder Zelle und für jedes Gen die optimale Proteinkonzentration akkurat eingestellt werden. Hierzu hat jeder Organismus detaillierte Regulationsmechanismen entwickelt. Regulation kann auf allen Stufen der Genexpression erfolgen, insbesondere liefert der Abbau der mRNA-Moleküle einen effizienten und direkten Kontrollmechanismus. Daher sind in allen Lebewesen spezifische Mechanismen - die Degradationsmechanismen - entstanden, welche aktiv den Abbau befördern. Um ein besseres Verständnis von den zugrunde liegenden Prozessen zu erlangen, untersuchen Biochemiker die Degradationsmechanismen im Detail. Gleichzeitig erlauben moderne molekularbiologische Verfahren die simultane Bestimmung der Zerfallskurven von mRNA für alle untersuchten Gene einer Zelle. Aus theoretischer Perspektive wird der Zerfall der mRNA-Menge als exponentieller Zerfall mit konstanter Rate betrachtet. Diese Betrachtung dient der Interpretation der zugrunde liegenden Experimente, berücksichtigt aber nicht die fundierten Kenntnisse über die molekularen Mechanismen der Degradation. Zudem zeigen viele experimentelle Studien ein deutliches Abweichen von einem exponentiellen Zerfall. In der vorliegenden Doktorarbeit wird daher eine erweiterte theoretische Beschreibung für die Expression von mRNA-Molekülen eingeführt. Insbesondere lag der Schwerpunkt auf einer verbesserten Beschreibung des Prozesses der Degradation. Die Genexpression kann als ein stochastischer Prozess aufgefasst werden, in dem alle Einzelprozesse auf zufällig ablaufenden chemischen Reaktionen basieren. Die Beschreibung erfolgt daher im Rahmen von Methoden der stochastischen Modellierung. Die fundamentale Annahme besteht darin, dass jedes mRNA-Molekül eine zufällige Lebenszeit hat und diese Lebenszeit für jedes Gen durch eine statistische Lebenszeitverteilung gegeben ist. Ziel ist es nun, spezifische Lebenszeitverteilungen basierend auf den molekularen Degradationsmechanismen zu finden. In dieser Arbeit wurden theoretische Modelle für die Degradation in zwei verschiedenen Organismen entwickelt. Zum einen ist bekannt, dass in eukaryotischen Zellen wie dem Hefepilz S. cerevisiae mehrere Mechanismen zum Abbau der mRNA-Moleküle in Konkurrenz zueinander stehen. Zudem ist der Abbau durch mehrere geschwindigkeitsbestimmende biochemische Schritte charakterisiert. In der vorliegenden Arbeit wurden diese Feststellungen durch ein theoretisches Modell beschrieben. Eine Markow-Kette stellte sich als sehr erfolgreich heraus, um diese Komplexität in eine mathematisch-fassbare Form abzubilden. Zum anderen wird in Kolibakterien die Degradation überwiegend durch einen initialen Schnitt in der kodierenden Sequenz der mRNA eingeleitet. Des Weiteren gibt es komplexe Wechselwirkungen mit dem Prozess der Translation. Die dafür verantwortlichen Enzyme - die Ribosomen - schützen Teile der mRNA und vermindern dadurch deren Zerfall. In der vorliegenden Arbeit wurden diese Zusammenhänge im Rahmen eines weiteren spezifischen, theoretischen Modells untersucht. Beide Mechanismen konnten an experimentellen Daten verifiziert werden. Unter anderem konnten dadurch die Interpretation der Zerfallsexperimente deutlich verbessert und fundamentale Eigenschaften der mRNA-Moleküle bestimmt werden. Ein Vorteil der statistischen Herangehensweise in dieser Arbeit liegt darin, dass theoretische Konzepte für das molekulare Altern der mRNAs entwickelt werden konnten. Mit Hilfe dieser neuentwickelten Methode konnte gezeigt werden, dass sich die Komplexität der Abbaumechanismen in einem Alterungsprozess manifestiert. Dieser kann mit der Lebenserwartung von einzelnen mRNA-Molekülen beschrieben werden. In dieser Doktorarbeit wurde eine verallgemeinerte theoretische Beschreibung des Abbaus von mRNAMolek ülen entwickelt. Die zentrale Idee basiert auf der Verknüpfung von experimentellen Zerfallsmessungen mit den biochemischen Mechanismen der Degradation. In zukünftigen experimentellen Untersuchungen können die entwickelten Verfahren angewandt werden, um eine genauere Interpretation der Befunde zu ermöglichen. Insbesondere zeigt die Arbeit auf, wie verschiedene Hypothesen über den Degradationsmechanismus anhand eines geeigneten mathematischen Modells durch quantitative Experimente verifiziert oder falsifiziert werden können.

Page generated in 0.0488 seconds