• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theory of mRNA degradation

Deneke, Carlus January 2012 (has links)
One of the central themes of biology is to understand how individual cells achieve a high fidelity in gene expression. Each cell needs to ensure accurate protein levels for its proper functioning and its capability to proliferate. Therefore, complex regulatory mechanisms have evolved in order to render the expression of each gene dependent on the expression level of (all) other genes. Regulation can occur at different stages within the framework of the central dogma of molecular biology. One very effective and relatively direct mechanism concerns the regulation of the stability of mRNAs. All organisms have evolved diverse and powerful mechanisms to achieve this. In order to better comprehend the regulation in living cells, biochemists have studied specific degradation mechanisms in detail. In addition to that, modern high-throughput techniques allow to obtain quantitative data on a global scale by parallel analysis of the decay patterns of many different mRNAs from different genes. In previous studies, the interpretation of these mRNA decay experiments relied on a simple theoretical description based on an exponential decay. However, this does not account for the complexity of the responsible mechanisms and, as a consequence, the exponential decay is often not in agreement with the experimental decay patterns. We have developed an improved and more general theory of mRNA degradation which provides a general framework of mRNA expression and allows describing specific degradation mechanisms. We have made an attempt to provide detailed models for the regulation in different organisms. In the yeast S. cerevisiae, different degradation pathways are known to compete and furthermore most of them rely on the biochemical modification of mRNA molecules. In bacteria such as E. coli, degradation proceeds primarily endonucleolytically, i.e. it is governed by the initial cleavage within the coding region. In addition, it is often coupled to the level of maturity and the size of the polysome of an mRNA. Both for S. cerevisiae and E. coli, our descriptions lead to a considerable improvement of the interpretation of experimental data. The general outcome is that the degradation of mRNA must be described by an age-dependent degradation rate, which can be interpreted as a consequence of molecular aging of mRNAs. Within our theory, we find adequate ways to address this much debated topic from a theoretical perspective. The improvements of the understanding of mRNA degradation can be readily applied to further comprehend the mRNA expression under different internal or environmental conditions such as after the induction of transcription or stress application. Also, the role of mRNA decay can be assessed in the context of translation and protein synthesis. The ultimate goal in understanding gene regulation mediated by mRNA stability will be to identify the relevance and biological function of different mechanisms. Once more quantitative data will become available, our description allows to elaborate the role of each mechanism by devising a suitable model. / Ein zentrales Ziel der modernen Biologie ist es, ein umfassendes Verständnis der Genexpression zu erlangen. Die fundamentalen Prozesse sind im zentralen Dogma der Genexpression zusammengefasst: Die genetische Information wird von DNA in Boten-RNAs (mRNA) transkribiert und im Prozess der Translation von mRNA in Proteine übersetzt. Zum Erhalt ihrer Funktionalität und der Möglichkeit von Wachstum und Fortpflanzung muss in jeder Zelle und für jedes Gen die optimale Proteinkonzentration akkurat eingestellt werden. Hierzu hat jeder Organismus detaillierte Regulationsmechanismen entwickelt. Regulation kann auf allen Stufen der Genexpression erfolgen, insbesondere liefert der Abbau der mRNA-Moleküle einen effizienten und direkten Kontrollmechanismus. Daher sind in allen Lebewesen spezifische Mechanismen - die Degradationsmechanismen - entstanden, welche aktiv den Abbau befördern. Um ein besseres Verständnis von den zugrunde liegenden Prozessen zu erlangen, untersuchen Biochemiker die Degradationsmechanismen im Detail. Gleichzeitig erlauben moderne molekularbiologische Verfahren die simultane Bestimmung der Zerfallskurven von mRNA für alle untersuchten Gene einer Zelle. Aus theoretischer Perspektive wird der Zerfall der mRNA-Menge als exponentieller Zerfall mit konstanter Rate betrachtet. Diese Betrachtung dient der Interpretation der zugrunde liegenden Experimente, berücksichtigt aber nicht die fundierten Kenntnisse über die molekularen Mechanismen der Degradation. Zudem zeigen viele experimentelle Studien ein deutliches Abweichen von einem exponentiellen Zerfall. In der vorliegenden Doktorarbeit wird daher eine erweiterte theoretische Beschreibung für die Expression von mRNA-Molekülen eingeführt. Insbesondere lag der Schwerpunkt auf einer verbesserten Beschreibung des Prozesses der Degradation. Die Genexpression kann als ein stochastischer Prozess aufgefasst werden, in dem alle Einzelprozesse auf zufällig ablaufenden chemischen Reaktionen basieren. Die Beschreibung erfolgt daher im Rahmen von Methoden der stochastischen Modellierung. Die fundamentale Annahme besteht darin, dass jedes mRNA-Molekül eine zufällige Lebenszeit hat und diese Lebenszeit für jedes Gen durch eine statistische Lebenszeitverteilung gegeben ist. Ziel ist es nun, spezifische Lebenszeitverteilungen basierend auf den molekularen Degradationsmechanismen zu finden. In dieser Arbeit wurden theoretische Modelle für die Degradation in zwei verschiedenen Organismen entwickelt. Zum einen ist bekannt, dass in eukaryotischen Zellen wie dem Hefepilz S. cerevisiae mehrere Mechanismen zum Abbau der mRNA-Moleküle in Konkurrenz zueinander stehen. Zudem ist der Abbau durch mehrere geschwindigkeitsbestimmende biochemische Schritte charakterisiert. In der vorliegenden Arbeit wurden diese Feststellungen durch ein theoretisches Modell beschrieben. Eine Markow-Kette stellte sich als sehr erfolgreich heraus, um diese Komplexität in eine mathematisch-fassbare Form abzubilden. Zum anderen wird in Kolibakterien die Degradation überwiegend durch einen initialen Schnitt in der kodierenden Sequenz der mRNA eingeleitet. Des Weiteren gibt es komplexe Wechselwirkungen mit dem Prozess der Translation. Die dafür verantwortlichen Enzyme - die Ribosomen - schützen Teile der mRNA und vermindern dadurch deren Zerfall. In der vorliegenden Arbeit wurden diese Zusammenhänge im Rahmen eines weiteren spezifischen, theoretischen Modells untersucht. Beide Mechanismen konnten an experimentellen Daten verifiziert werden. Unter anderem konnten dadurch die Interpretation der Zerfallsexperimente deutlich verbessert und fundamentale Eigenschaften der mRNA-Moleküle bestimmt werden. Ein Vorteil der statistischen Herangehensweise in dieser Arbeit liegt darin, dass theoretische Konzepte für das molekulare Altern der mRNAs entwickelt werden konnten. Mit Hilfe dieser neuentwickelten Methode konnte gezeigt werden, dass sich die Komplexität der Abbaumechanismen in einem Alterungsprozess manifestiert. Dieser kann mit der Lebenserwartung von einzelnen mRNA-Molekülen beschrieben werden. In dieser Doktorarbeit wurde eine verallgemeinerte theoretische Beschreibung des Abbaus von mRNAMolek ülen entwickelt. Die zentrale Idee basiert auf der Verknüpfung von experimentellen Zerfallsmessungen mit den biochemischen Mechanismen der Degradation. In zukünftigen experimentellen Untersuchungen können die entwickelten Verfahren angewandt werden, um eine genauere Interpretation der Befunde zu ermöglichen. Insbesondere zeigt die Arbeit auf, wie verschiedene Hypothesen über den Degradationsmechanismus anhand eines geeigneten mathematischen Modells durch quantitative Experimente verifiziert oder falsifiziert werden können.
2

Oscillatory transcription factors and stochastic gene expression / From pulsatile p53 dynamics to bursty transcription in the DNA damage response to ionizing radiation.

Friedrich, Dhana 06 November 2020 (has links)
Transkriptionsfaktoren (TFs) empfangen Signale in Signaltransduktionskaskaden und übersetzen diese in eine zelluläre Antwort. Dadurch ermöglichen sie es Zellen, Organen und Organismen sich an verändernde Umgebungsbedingungen anzupassen. In früheren Studien wurde gezeigt, dass viele TFs nach Aktivierung Oszillationen im Zellkern aufweisen. Ein Beispiel dafür ist p53. Als zentrales Protein im Rahmen der zellulären Stressantwort reguliert es nach DNA Schaden die Expression hunderter Zielgene die das Zellschicksal steuern. Anomalien in der Aktivität von p53 stehen im Zusammenhang mit schwerwiegenden Erkrankungen wie der Krebsentstehung. Die Dynamik der Akkumulation von p53 im Zellkern ist abhängig von der Art des DNA Schadens und korreliert mit der resultierenden zellulären Antwort. Obwohl dieser Zusammenhang mehrfach gezeigt wurde, sind die zugrundeliegenden molekularen Mechanismen jedoch weitgehend unerforscht. Mit der vorliegenden Arbeit soll ein Beitrag zum Verständnis dazu geleistet werden, wie p53 Oszillationen im Zellkern die Transkription von Zielgenen auf Einzelzellebene modulieren. Dazu wurden sieben Zielgene ausgewählt und mittels Einzelmolekül-Fluoreszenz in situ Hybridisierung und mathematischer Analyse charakterisiert. Es werden Ergebnisse der quantitativen, zeitaufgelösten mRNA Expression und der bursting Aktivität von Zielgenpromotoren mit Einzelzell- und Einzelmolekülauflösung dargestellt. Diese Analyse weist darauf hin, dass die Aktivierung von p53 nach DNA Doppelstrangbrüchen primär die Frequenz des stochastischen bursting der untersuchten Zielgene reguliert. Diese können anhand ihrer Promotoraktivität in drei Archetypen eingeteilt werden: anhaltend, transient und pulsierend, die jedoch nicht ausschließlich durch veränderte p53 Menge im Zellkern erklärt werden können. Stattdessen weisen die Ergebnisse darauf hin, dass Veränderungen im Acetylierungszustand der C-terminalen Lysinreste von p53 entscheidend für diese Gen-spezifische Regulation sind. / Transcription factors (TFs) are receiver and compiler of cell signaling, transmitting incoming inputs into cellular responses that enable cells, organs and organisms to respond and adapt to a changing environment. In the past, it has been shown that many TFs exhibit oscillations of nuclear abundance over time when activated. One of these TFs is the tumor suppressor p53, a central hub in the signaling network regulating the cellular stress response, controlling cell fate decisions by changing the expression of hundreds of target genes. Aberrations in p53’s activity are related to severe human malignancies such as cancer. The dynamics of its nuclear accumulation are stimulus dependent and enable the p53 pathway to mediate distinct responses to cellular stress. However, the molecular mechanisms translating such dynamics to altered gene expression remain elusive. In this thesis, I analyzed how oscillations of p53 affect the transcriptional regulation of target genes in single-cells and at individual promoters. I chose a panel of seven targets and employed a combinatorial approach of single-molecule fluorescence in-situ hybridization and mathematical analysis. I present quantitative, time-resolved measurements of target gene mRNA expression and transcriptional bursting activity with single-cell and single-molecule resolution. The resulting data show characteristic principles how p53 nuclear accumulation increases transcriptional bursting upon stimulation and reveal gene-specific modulations. P53 target promoters are regulated by changing the fraction of active promoters, indicating burst frequency regulation. Based on this, genes can be grouped along three archetypes of promoter activity: sustained, transient and pulsatile. These archetypes cannot solely be explained by nuclear p53 levels or promoter binding of total p53. Instead, I provide evidence that the time-varying acetylation state of p53’s C-terminal lysine residues is critical for this gene-specific regulation.

Page generated in 0.1108 seconds