• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 41
  • 22
  • Tagged with
  • 183
  • 183
  • 66
  • 60
  • 42
  • 33
  • 25
  • 24
  • 24
  • 23
  • 23
  • 23
  • 22
  • 22
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Molecular characterisation of bacterial proteins that interact with sulfur or nitrogen compounds

Grabarczyk, Daniel Ben January 2014 (has links)
Many bacteria use inorganic nitrogen and sulfur compounds for energy metabolism. These compounds are often toxic and so bacteria must adapt to survive their deleterious effects. Bacteria use specific proteins in order to metabolise, sense and detoxify these compounds. In this thesis protein interactions with inorganic nitrogen and sulfur compounds are examined at the mechanistic level. Intermediates in the Sox sulfur oxidation pathway are covalently attached to a cysteine on the swinging arm of the substrate carrier protein SoxYZ. An interaction between the Sox pathway enzyme SoxB and the carrier protein SoxYZ is demonstrated. A crystal structure of a trapped SoxB-SoxYZ complex at 3.3 Å resolution identifies two sites of interaction, one between the SoxYZ carrier arm and the SoxB active site channel and the other at a patch distal to the active site. The presence of a distal interaction site suggests a mechanism for promiscuous specificity in the protein-protein interactions of the Sox pathway. Using biophysical methods it is shown that SoxB distinguishes between the substrate and product forms of the carrier protein through differences in interaction kinetics and that the carrier arm-bound substrate group is able to out-compete the adjacent C-terminal carboxylate for binding to the SoxB active site. The thiosulfate dehydrogenase TsdA has an unusual His/Cys coordinated heme. TsdA catalyses oxidative conjugation of two thiosulfate molecules to form tetrathionate. Mass spectrometry and UV/visible spectroscopy are used to identify an S-thiosulfonate reaction intermediate which is covalently attached to the cysteine heme ligand. A catalytic mechanism for TsdA is proposed using a crystal structure of TsdA at 1.3 Å resolution alongside site-directed mutagenesis of active site residues. Nitric oxide is produced by the mammalian immune response to kill bacterial pathogens. Part of the killing mechanism occurs through the reaction of nitric oxide with protein-bound iron-sulfur clusters. However, the same type of reaction is also exploited by nitric oxide-sensing bacterial proteins. An infrared spectroscopy approach is developed to detect the products of iron-sulfur protein nitrosylation. Using this methodology it is shown that the presence of trace O2 strongly impacts which products are formed in these nitrosylation reactions. These observations are of physiological relevance because bacteria are often exposed to NO under aerobic conditions during an immune response.
122

Bioelectrochemistry by fluorescent cyclic voltammetry

Mizzon, Giulia January 2012 (has links)
Understanding the factors influencing the ET characteristics of redox proteins confined at an electrochemical interface is of fundamental importance from both pure (fundamental science) and applied (biosensory) perspectives. This thesis reports on progress made in the emerging field of coupled electrochemical characterization and optical imaging in moving the analysis of redox-active films to molecular scales. More specifically the combination of cyclic voltammetry and wide-field Total Internal Reflection (TIRF) microscopy, here named ‘Fluorescent Cyclic Voltammetry’ (FCV), was applied to monitoring the response of surface-confined redox active proteins at submonolayer concentrations. The combined submicrometre spatial resolution and photon capture efficiency of an inverted TIRF configuration enabled the redox reactions of localized populations of proteins to be directly imaged at scales down to a few hundreds of molecules. This represents a 6-9 orders of magnitude enhancement in sensitivity with respect to classical current signals observed in bioelectrochemical analysis. Importantly, measurements of redox potentials at this scale could be achieved from both natural and artificially designed bioelectrochemical fluorescent switches and shed fundamental light on the thermodynamic and kinetic dispersion within a population of surface confined metalloproteins. The first three chapters of this thesis provide an overview of the relevant literature and a theoretical background to both the rapidly expanding fields of electroactive monolayers bioelectrochemistry and TIRF imaging. The initial design and construction of a robust electrochemically and optically addressable fluorescent switch, crucial to the applicability of FCV is reported in chapter 5. The generation of optically transparent, and chemically modifiable electrode surfaces suitable for FCV are also described. Chapter 6 describes the response of the surface confined azurin-based switch. Analysis of the spatially-resolved redox reaction of zeptomole samples in various conditions enables the mapping of thermodynamic dispersion across the sampled areas. In chapter 7 the newly developed FCV detection method was extended to investigate more complex bioelectrochemical systems containing multiple electron transferring redox centres and responding optically at different wavelengths. This approach provides a platform for spectral resolution of different electrochemical processes on the same sample. Finally in chapter 8 an electrochemical procedure is proposed for investigating the kinetic response of redox proteins using a fundamentally new methodology based on interfacial capacitance. In using variations in the surface chemistry to tune the rate of electron transfer, the approach was shown to be a robust and facile means of characterising redox active films in considerably more detail than possible through standard electrochemical methodologies. Ultimately, it can be applied to probe dispersion within protein populations and represents a powerful means of analysing molecular films more generally.
123

Biophysical studies of membrane protein structure and function

Dijkman, Patricia M. January 2014 (has links)
Membrane proteins play a key role in numerous physiological processes such as transport, energy transduction in respiratory and photosynthetic systems, and signal transduction, and are of great pharmaceutical interest, comprising more than 60&percnt; of known drug targets. However, crystallisation of membrane proteins, and G protein-coupled receptors (GPCRs) in particular, still relies heavily on the use of protein engineering strategies, which have been shown to hamper protein activity. Here, a range of biophysical methods were used to study the structure and function of two membrane proteins, a prokaryotic peptide transporter, PepT<sub>So</sub> and a GPCR, neurotensin receptor 1 (NTS1), using different membrane reconstitution methods to study the proteins in a native-like environment. Firstly, using the pulsed electron paramagnetic resonance (EPR) method of double electron-electron resonance (DEER) the conformation of PepT<sub>So</sub> reconstituted into lipid bilayers was assessed and compared to previous structural data obtained from crystallography and modelling. The influence of the membrane potential and the presence of substrate on the conformational heterogeneity of this proton-coupled transporter were investigated. Secondly, NTS1 purification was optimized for biophysical study. Cysteine mutants were created and a labelling protocol was developed and optimized for fluorophore and nitroxide labelling studies. NTS1 was then studied by continuous-wave EPR, to assess the influence of ligand on local protein dynamics, and to assess the structure of a receptor segment known as helix 8, that was proposed to be an &alpha;-helix, but was only observed to be helical in one of the NTS1 crystallographic studies. Ensemble and single-molecule F&ouml;rster resonance energy transfer (FRET), and DEER were combined to study the dimerisation behaviour of NTS1, showing novel dynamics of the interfacial associations. Finally, the signalling mechanism of NTS1 was also investigated using microscale thermophoresis (MST) to assess the affinity of the receptor for G protein in vitro in the absence of ligand, or in the presence of agonist or antagonist. MST measurements were performed in detergent and in nanodiscs of different lipid compositions, to assess the influence of the lipid environment on receptor function. In summary, this thesis demonstrates the potential of biophysical techniques to study various aspects of membrane protein structure and function in native-like lipid systems, complementing e.g. structural data obtained from crystallographic studies with functional data for membrane proteins in more native environments, as well as shedding light on protein dynamics. The work presented here provides novel insights into PepTSo transport, and in particular into NTS1 structure, signalling, and oligomerisation, opening up several avenues for future research.
124

Structure and function of bacterial proteins secreted by the type three secretion and twin arginine translocation pathways

Lillington, James E. D. January 2011 (has links)
The Type Three Secretion Systems (T3SSs) of Gram-negative bacteria, including Shigella, Salmonella, and Enteropathogenic/Enterohaemorrhagic Escherichia coli (EPEC/EHEC), pass virulence factors directly into the host to mediate invasion. Prior to secretion down the narrow T3SS channel, effector proteins associate with chaperone proteins. The binding enables the T3SS to keep effectors soluble and partially unfolded for secretion. In the first part of this thesis, the association of one promiscuous chaperone, Spa15 of Shigella flexneri, with three of its cognate effectors has been studied. In addition to the role this plays in secretion, the binding of one particular substrate leads to Spa15 being involved in the regulation of the T3SS. The oligomerisation and impact of substrate binding upon Spa15 has been determined by crystallography and EPR. Once secreted, T3SS effectors subvert the host cytoskeleton for the benefit of the bacteria. Soluble homologues of Spa15 effectors from EHEC and Salmonella have been purified, and their interactions with host GTPases which lead to stress fibre phenotypes observed. The Twin Arginine Translocation (Tat) pathway provides a contrasting view of bacterial secretion. Instead of preventing folding in the cytoplasm, it is a criterion of transport that the protein be folded. One of the reasons for internal folding is the necessity to insert cofactors which could not be incorporated externally. In the second part of this thesis, a protein which exemplifies this necessity is studied. This is PhoD, the model protein for Tat export from Bacillus subtilis. PhoD is an alkaline phosphodiesterase expressed to scavenge phosphate in times of phosphate deficiency. The structure of PhoD has been solved, and the protein is shown to be able to cleave a component of its own cell wall. It uses an unusual catalytic site more reminiscent of the eukaryotic purple acid phosphatases than of other currently known alkaline phosphatases. Furthermore this site appears to require metal binding before export from the bacterial cytoplasm.
125

Biophysical studies of protein assemblies

Wicky, Basile Isidore Martin January 2019 (has links)
Proteins are synthesised as linear polymeric chains. The subtle energetic interplay of interatomic interactions results in chain folding, through which proteins may acquire defined structures. This spatial organisation is encoded by the protein sequence itself; the so-called thermodynamic hypothesis formulated by Anfinsen in 1961. A defined structure is often considered a pre-requisite to protein function, but widespread existence of intrinsically disordered proteins (IDPs) has prompted a re- evaluation of the ways biological function may be encoded into polypeptide chains. Furthermore, proteins often exist as part of multi-component entities, where regulation of assembly is integral to their properties. The interplay between disorder, oligomerisation and function is the focus of this thesis. Some IDPs fold conditionally upon interacting with a partner protein; a process known as coupled folding and binding. What are the biophysical advantages and consequences of disorder in the context of these interactions? A common feature of IDPs is their sequence composition bias, with charged residues being often over-represented. It is therefore tempting to speculate that electrostatic interactions may play a major role in coupled folding and binding reactions. Surprisingly, the opposite was found to be true. Charge-charge interactions only contributed about an order of magnitude to the association rate constants of two contrasting model systems. The lack of pre-formed binding interfaces-a consequence of disorder-might preclude electrostatic acceleration from complementary patches. By looking at the role of the sequence, many studies have taken a protein-centric approach to understanding disorder. Yet there is paucity of data about the effect of extrinsic factors on interactions involving disordered partners. Investigating the role of co-solutes, it was discovered that the kinetic and thermodynamic profiles of coupled folding and binding reactions were sensitive to ion-types. This effect followed the Hofmeister series, and occurred at physiological concentrations of salt. The sensitivity of coupled folding and binding reactions-a consequence of the lack of stability of IDPs-might be advantageous. Given the role of ions in biology, this 'biophysical sensing' could be a mechanism of physiological relevance, allowing modulation of protein-protein interactions involving disordered partners in response to changes in their environments. In cells, signalling networks are often multi-layered, and involve competing protein-protein interactions. The interplay between the biophysical characteristics of the components, and the behaviour of the network were investigated in a model tripartite system composed of folded and disordered proteins. The BCL-2 family regulates the intrinsic pathway of apoptosis through control of mitochondrial outer-membrane permeabilisation; a result of BAK and BAX oligomerisation. Through a shared homology motif (termed BH3), the subtle balance of their interactions determines cellular fate at the molecular level. Characterisation of the model under simple biochemical conditions revealed large differences in affinities among binary interactions; the consequence of the lifetime of the complexes, not their speed of association. A membrane-like environment, re-created using detergents, allows the oligomerisation of BAK and BAX in vitro. Furthermore, investigation of the tripartite system under detergent conditions showed that regulation of the network was the result of competing hetero- and homo-oligomerisation events. Relationships to their biophysical properties were gained by probing their energy landscapes using protein folding techniques. The connection between the biophysical properties of the components of the network and their interactions provides a molecular explanation for the regulation of apoptosis. This thesis offers insights into the ways structured assemblies and environmentally responsive disorder elements may encode functions into proteins.
126

Structural and Functional Studies on Pyridoxal Kinase and Pyridoxal 5′-phosphate Dependent Enzymes

Deka, Geeta January 2017 (has links) (PDF)
Most of the chemical reactions of living cells are catalyzed by protein enzymes. These enzymes are very efficient and display a high degree of specificity with respect to the reaction catalyzed. Cellular activities depend critically on the precise three-dimensional structure and function of thousands of enzymes. Many enzymes require binding of metal ions or small organic molecules for their function. The organic molecules that are indispensible components of catalysis by proteins are called coenzymes. Pyridoxal 5ʹ-phosphate (PLP) is a versatile coenzyme found in all living cells. PLP-dependent enzymes play a key role in the function of most of the enzymes catalyzing reactions in the metabolic pathways of amino acid synthesis and degradation. The enzyme pyridoxal kinase serves to make available the co-enzyme PLP to apo-PLP dependent enzymes. Because of their key role in cellular function and their medical importance, the structure and function of PLP-dependent enzymes have been extensively investigated. In the past decade, detailed investigations on the structure and function of several PLP-dependent enzymes have been carried out in our laboratory. The enzymes studied are B. subtilis serinehydroxymethyl transferase (SHMT), S. typhimurium acetylornithine aminotransferase (AcOAT), S. typhimurium and E. coli diaminopropionate ammonia lyase (DAPAL), S. typhimurium D-serine dehydratase (DSD), S. typhimurium D-cysteine desulfhydrase (DCyD) and S. typhimurium arginine decarboxylase (ArgD). The extensive studies conducted on PLP-dependent enzymes in our laboratory during the past decade has not only resulted in deeper understanding of their structure and function but also raised several new questions regarding substrate recognition, reaction specificity, role of active site residues in the catalytic reaction, mechanism of catalysis and potential applications of these enzymes. This thesis is an attempt to answer some of these questions. The thesis also presents the structure and function of a new protein, Salmonella typhimurium pyridoxal kinase, the enzyme that provides PLP for PLP-dependent enzymes. Single crystal X-ray diffraction technique is the most powerful tool currently available for the elucidation of the three-dimensional structures of proteins and other biological macromolecules and for revealing the relationship between their structure and function. X-ray diffraction studies have provided in depth understanding of the topology of secondary structural elements in the three-dimensional structures of proteins, the hierarchical organization of protein domains, structural basis for the substrate specificity of enzymes, intricate details of mechanisms of enzyme catalyzed reactions, allosteric regulation of enzyme activity, mechanisms of feed-back inhibition, structural basis of protein stability, symmetry of oligomeric proteins and their possible biological implications and a myriad of other biochemical and biophysical properties of proteins. The work reported in this thesis is primarily based on X-ray diffraction studies. X-ray crystal structure investigations are complemented by spectral and biochemical studies on the catalyzed reactions. The thesis begins with an introduction to PLP-dependent enzymes and presentation of a brief summary of the earlier work carried out in our laboratory on PLP-dependent enzymes (Chapter 1). A brief description of earlier functional classification of PLP-dependent enzymes and the more recent classification of these enzymes into the four groups based on their three-dimensional structure is provided. Although enzymes belonging to these four structural classes have evolved from independent evolutionary lineages, they share some common features near their active sites and in the mode of PLP binding. Earlier work carried out elsewhere on pyridoxal kinase and its key role in maintaining PLP at a low concentration in the cytosol is presented. Different mechanisms that have been proposed for the transfer of PLP from pyridoxal kinase to other apo PLP-dependent enzymes are briefly described. The experimental procedures and computational methods used during the course of these investigations to obtain the results reported in chapters 3-6 are presented in Chapter 2. Most of these methods are applicable to the isolation of plasmids, cloning, over expression, protein purification, mutant construction, crystallization, X-ray diffraction data collection and processing, structure elucidation and refinement, validation and structural analysis presented in the next three chapters. Various programs and protocols used for data processing, structure determination, refinement, model building, structure validation and analysis are also briefly described. In chapter 3, the role of a number of active site residues in the reaction catalyzed by EcDAPAL, a fold type II PLP-dependent enzyme, the structure of which was determined earlier in the laboratory is explored by mutational, biochemical and structural analyses. Earlier studies had established the probable role of Asp120 and Lys77 in the reaction leading to the breakdown of D-DAP and L-DAP, respectively (Bisht et al., 2012). To further validate the earlier observations, a number of active site mutants were generated for Asp 120 (D120N, D120C, D120S and D120T), Asp 189 (D189N, D189C, D189S and D189T), Lys77 (K77T, K77H, K77R and K77A), His 123 (H123L) and Tyr 168 (Y168F). The structure of D120N mutant crystal obtained after soaking in crystallization cocktail containing D-DAP revealed the presence of an intact external aldimine complex at the active site supporting the earlier proposal that Asp120 is the base abstracting the Cα proton from the D-isomer of DAP. Biochemical and structural observations suggested that none of the Asp189 mutants may bind PLP and were catalytically inactive suggesting an essential role for Asp189 in catalysis. In contrast to type I PLP-dependent enzymes, none of the Lys 77 mutants of EcDAPAL could bind PLP either covalently or non-covalently and were inactive with both the isomers of DAP. Thus, Lys77 appears to be important for both PLP binding and catalysis. H123L mutant formed an external aldimine with D-DAP and a gem-diamine complex with L-DAP indicating that this residue is also crucial for catalysis. These studies have provided additional support to the catalytic mechanism of EcDAPAL proposed earlier. The next Chapter 4 explores the structure, function and catalytic mechanism of Salmonella typhimurium DAPAL (StDAPAL). The protein was purified from a construct carrying a hexa-histidine tag at the C-terminus by Ni-NTA chromatography. The purified protein was demonstrated to be homogeneous by SDS-PAGE and MALDI-TOF. Crystals of StDAPAL belonging to the C-centred monoclinic space group (C121) with four molecules in the asymmetric unit were obtained by the micro batch method and used for collecting X-ray diffracting data. The crystal structure was determined by molecular replacement using the homologous enzyme from E. coli (PDB code 4D9M, Bisht et al., 2012), which shares a sequence identity of 50% with the S. typhimurium enzyme as the phasing model in the program Phaser (McCoy et al., 2007) of the CCP4 suite. The model was refined with Refmac5 of CCP4 suite to R and Rfree values of 25.5% and 30.9%, respectively. A superposition of the structure so obtained over EcDAPAL revealed that the two structures are very similar. A sulfate molecule bound to the active site of StDAPAL could be located. The position of the sulfate corresponds to that of the carboxyl group of aminoacrylate intermediate of EcDAPAL (4D9M). The PLP was bound to Lys78 as an internal aldimine. Since the active sites of the two protomers in fold type II PLP-dependent enzymes are independent, it might be possible to obtain functional monomers of EcDAPAL. With this view, mutation of a conserved Trp (Trp399) present in the dimeric interface resulted in the destabilization of the dimeric interface and partial conversion of the dimeric protein to a monomeric protein. However, the monomeric species of EcDAPALW399R was unable to bind PLP and hence did not possess any catalytic activity. This highlights the importance of dimeric organization for efficient binding of PLP as well as for the activity of the enzyme. A remarkable difference between EcDAPAL and StDAPAL is the absence of a disulfide bond between residues Cys271 and Cys299 in StDAPAL equivalent to the bond formed between Cys265 and Cys291 in EcDAPAL. Mutation of Cys265 and Cys291 of EcDAPAL to Ser did not affect the activity of the enzyme towards either of the isomers of the substrate indicating that the disulfide bond is not crucial for enzyme activity. The stability of the loop corresponding residues 261-295 of EcDAPAL was believed to be promoted by the disulfide bond. However, the equivalent loop was found to be ordered in StDAPAL even though the disulfide bond is absent. In contrast to StDAPAL, EcDAPAL did not show any metal dependent activity. The previous two chapters dealt with fold type II PLP-dependent enzymes. In contrast, Chapter 5 deals with revisiting the structure and function of a fold type I PLP-dependent enzyme, Salmonella typhimurium arginine decarboxylase (StADC). ADC is a very large polypeptide in comparison with other fold type I enzymes. It is induced when the bacterium is subjected to low pH and plays a major role in protecting the cells from acid stress. The structure of StADC was determined but not satisfactorily refined by Dr. S. R. Bharat earlier. The X-ray diffraction data collected by Bharat needed to be improved and the structure needed to be further refined and compared with the homologous E. coli enzyme. Therefore, the entire process of data processing, structure solution and refinement was repeated. The refined structure of StADC was found to correspond to the apo form of the enzyme with only a phosphate molecule occupying the position equivalent to that of 5’ phosphate of PLP observed in EcADC holo enzyme structure. This allowed examination of structural changes that accompany PLP binding and formation of an internal aldimine. The apo to holo transition in StADC involves the movement and ordering of two loops consisting of residues 151-164 and 191-196 which are in the linker and PLP binding domains of the protein, respectively. Phosphate binding by itself appears to be insufficient for these structural changes. These two loops are close to the PLP binding site of the other protomer of the dimer. Hence, these movements are probably important for the catalytic function of the enzyme. Holo ADC has been found as a decamer in other studies. The decameric form of the apo-StADC suggests that PLP binding may not be essential for the oligomeric state of the protein. ADC appears to reduce proton concentration inside the cell in two ways; (i) by surface charge neutralization and (ii) by arginine decarboxylation by extracting a proton from the cytoplasm. The resulting product agmatine is exchanged for extra cellular arginine by arginine-agmatine antiporter. The low sequence identity and lack of structural similarity of the inducible and constitutive forms of ADC from S. typhimurium shows that these are unlikely to be products of divergent evolution. The final chapter 6 of the thesis presents the work carried out on S. typhimurium pyridoxal kinase (PLK). In the salvage pathway of pyridoxal 5’phosphate (PLP), PLP is produced as the product of the reaction catalyzed by PLK using PL, PN and PM as substrates. Thus, PLK plays the critical role of ensuring availability of PLP to the large number of PLP-dependent enzymes. S. typhimurium PLK was purified to homogeneity, crystallized in its native as well as ligand bound forms. It was necessary to circumvent an unusual problem caused by spots arising from a contaminant crystal to obtain the structure of the native crystals of PLK that belonged to the P212121 space group with two protomers in the crystal asymmetric unit. It was then straight forward to determine the ligand bound structures of StPLK (space group P43212) obtained by co-crystallization with ATP, PL and Mg2+ by molecular replacement using the wild type structure as the phasing model. The structures obtained by co-crystallization revealed the presence of ADP, Mg2+ and a PL bound to the active site Lys233 via a Schiff base (internal aldimine). This is the first structure in which the presence of an internal aldimine in the active site of PLK has been observed. Formation of the internal aldimine might be one way to prevent the release of excess PLP and protecting the cell from PLP induced toxicity. The enzyme was shown to be inhibited by the product which will also help in maintaining PLP concentration at low levels. It was also demonstrated that PLK interacts with apo-PLP-dependent enzymes. This observation supports possible direct transfer of PLP from PLK to PLP-dependent enzymes. The thesis ends with an appendix where the work carried out during the course of the thesis work but not as part of the thesis is briefly described.
127

Design and Stabilization of Stem Derived Immunogens from HA of Influenza A Viruses

Najar, Tariq Ahmad January 2015 (has links) (PDF)
Influenza virus belongs to the Orthomyxovirus family of viruses that causes respiratory infection in humans, leading to morbidity and mortality. The mature influenza A virion has an envelope that contains two major surface glycoproteins proteins – hemagglutinin (HA) and neuraminidase (NA). HA is a highly antigenic molecules and is responsible binding to host cell surface receptors (Sialic acid), and membrane fusion between the viral membrane and the host endosomal membrane. Most of the antibody response generated against influenza virus either by vaccination or by natural infection is directed against HA. Influenza virus has segmented negative–sense RNA genome which gives the virus the ability to evade the host immune response by incorporating mutations (antigenic drift) and/or by reassotment with other subtypes of influenza A viruses (antigenic shift). Currently licensed vaccines which include an inactivated vaccine, a live attenuated vaccine, and recombinant subunit vaccine are beneficial for providing protection against seasonal influenza viruses that are closely related to the vaccine strain but fail to provide protection against drifted strains. This limits their breadth of protection and thus requires annual revaccination with reformulated vaccines. Also, because selection of a vaccine strain for the next season is purely based on surveillance and prediction, sometimes mismatches do happen between the selected vaccine strains and circulating viruses, resulting in a drastic decrease in vaccine efficacy and thus high morbidity and mortality. Furthermore, the production of these seasonal vaccines takes 6-8 months on an average, and does not guarantee protection against infection with novel reassortant viruses which can cause pandemics. To overcome the draw-backs of seasonal influenza virus vaccines and to enhance our pandemic preparedness, there is an increasing need for game-changing influenza virus vaccines that can confer robust, long-lasting protection against a broad spectrum of influenza virus isolates. Influenza hemagglutinin (HA) is highly immunogenic and thus a major target for vaccine design. HA is synthesized as a precursor polypeptide (HA0), assembles into a trimer, matures by proteolytic cleavage along the secretory pathway and is transported to the cell surface. Mature HA has a globular head domain, primarily composed of the HA1 subunit, which mediates receptor binding, while the stem domain, predominantly comprises of the HA2 subunit, and houses the fusion peptide. At neutral pH, the HA stem is trapped in a metastable state but undergoes an extensive conformational rearrangement at low pH in the late endosome (host-cell endosome) to trigger the fusion of virus and host membranes. Clusters of ‘antigenic sites’ have been identified in the head domain of HA, indicating that it harbors an almost continuous carpet of epitopes that are targeted by antibodies. However, these immunodominant sites constantly accumulate mutations to escape immune pressure, and thereby narrow the breadth of head-directed neutralizing antibodies (nAbs). In contrast to the highly-variable head domain, the membrane-proximal HA stem subdomain has much less sequence variability and, thus, is a desirable target for influenza vaccine development. In the recent past, several broadly neutralizing antibodies (bnAbs) targeting this subdomain with neutralizing activity against diverse influenza A virus subtypes have been isolated from infected people, further proving that this subdomain of HA can be targeted as a vaccine candidate. Steering the immune response towards this conserved, subimmunodominant stem subdomain in the presence of the variable immunodominant head domain of HA has been quite challenging. Alternatively, mimicking the epitome of these stem-directed bnAbs in the native, pre-fusion conformation in a ‘headless’ stem immunogenic capable of eliciting a broadly protective immune response has been difficult because of the metastable nature of HA. Addressing the aforementioned challenges, here we describe the design, stabilization and characterization of novel stem derived immunogens from HA of influenza A viruses using a protein minimization approach. Chapter 1 gives an overview of the influenza virus life cycle, nomenclature and classification of influenza virus; outlines the structural organization and functional properties of different viral proteins. An introduction to the kind of immune responses generated during vaccination or natural infection with the virus is discussed. The conventional vaccines that are currently used and their limitations, recent progress in the field of novel vaccine developmental approaches targeting the conserved epitopes on HA, is also described in this chapter. This chapter also gives a broad overview of bnAbs that have been isolated in the recent past, which target the novel antigenic signatures on HA. The design of a stem domain construct from an H3N2 virus (A/HK/68) is described in Chapter 2. In order to ensure that HA2 folds into the neutral pH conformation, regions of HA1 interacting with it were included in the design. Additionally, two Asp mutations were introduced in the B loop of HA2 to destabilize the low pH conformation and stabilize the desired native, neutral pH conformation. Studies using small peptides (57-98 of HA2) indicated that Asp mutations at positions 63 and 73 destabilized the low pH conformation. Studies on mutants with additional pairs of introduced Cys residues showed that the designed protein H3HA6 was folded into the neutral pH form. Immunization studies using mice showed that the protein was highly immunogenic and provided complete protection against a lethal dose of a homologous virus. Two constructs H3HA6a and H3HA6b, designed from the stem region of drifted H3N2 viruses (A/Phil/2/82 and A/Bris/10/07) were tested for protection against HK/68 to determine the extent of cross-strain protection provided by HA6. While HA6a (from A/Phil/2/82) provided near complete protection against HK/68, HA6b could protect against challenge only partially, possibly because of lower titers of antibodies elicited by this antigen. Studies using FcRγ chain knockout mice indicated that majority of the protection mediated by anti-HA6 antibodies was because of antibody mediated effectors functions, although neutralization as a mechanism of protection was also likely to contribute. In all the 18 subtypes of HA, the B loop contains residues that form the hydrophobic core of the extended coiled coil of the low pH form. As in the case of H3HA6, we suggest that these residues could be mutated to Asp to destabilize the low pH conformation. Two circularly permuted stem domain constructs from an H1N1 virus (A/PR/8/34) and an H5N1 virus (A/Viet/1203/04) were made. The design and characterization of these proteins is described in Chapter 3. H1HA6, H1HA0HA6 and H5HA6 were purified from inclusion bodies and refolded. The proteins H1HA6 and H1HA0HA6 were highly immunogenic and provided protection against a lethal challenge with homologous PR/8/34 virus. Anti-H1HA6 sera had higher titres of antibodies against heterogonous HAs as compared to convalescent sera. Stem derived immunogens from drifted H1N1 viruses (A/NC/20/99 and A/Cal/7/09) have been made and tested for cross-protection with PR/8/34 challenge. While H5HA6 also elicited high titers of antibodies, it could only protect partially against PR/8/34 challenge probably because high enough titers of cross-reactive protective antibodies were not elicited by this protein. These stem immunogens conferred robust subtype specific and modest heterosubtypic protection in vivo against lethal virus challenge. However, the immunogens, especially H1HA6, a stem immunogen from group 1 (PR8) virus is aggregation prone when expressed in E.coli. The strategy used to improve the biophysical and biochemical properties and thus the immunogenicity of these stem derived immunogens is discussed in Chapter 4. A random mutagenesis library of H1HA6 was constructed by error prone PCR using modified nucleotide analogues. The library was displayed on the yeast cell surface to isolate mutants showing better surface expression and improvement in binding to the broadly neutralizing antibody CR6261 compared to the wild-type protein. We isolated few clones, of which one mutant (H1HA6P2) dominated the enriched population. The other mutants differed slightly from H1HA6P2. This mutant differs from the wild-type by two mutations K314E and M317T (H1 numbering) which are close to the CR6261 binding site but outside the antibody foot-print (epitope). This mutant showed improved binding to CR6261 and exhibited significant improvement in surface expression. Improvement was also observed in binding of this mutant to F16v3-ScFv (another broadly neutralizing antibody). Two cysteine mutations were also introduced to further stabilize the trimeric form of the protein. Chapter 5 describes the biophysical and biochemical characterization of the high affinity isolated mutant at the protein level. We expressed this affinity matured mutant gene in E.coli and purified the protein from inclusion bodies. The stabilized mutant protein showed remarkable improvement in biophysical and biochemical properties and was recognized by stem directed conformation sensitive broadly neutralizing antibodies CR6261, F10 and F16v3 with affinity comparable to the full-length HA ectodomain. These results clearly suggest that this mutant protein is properly folded in its native pre-fusion conformation and thus can be an excellent candidate for eliciting stem directed broadly neutralizing antibodies. All these stabilized versions of stem derived immunogens will be tested for immunogenicity and cross-protection with different viral challenges. Chapter 6 describes the development of a method for mapping antibody epitopes (especially conformational epitopes) down to the residue level. Using a panel of single cysteine mutants, displayed on the yeast cell surface, this bypasses the need for laborious and time consuming protein purifications steps used in conventional methods for epitope mapping. We made a panel of single cysteine mutants, covering the entire surface of the antigen (CcdB, a bacterial toxin protein), displayed each mutant individually as well as in a pool, representing all mutants together on the yeast cell surface, and covalently labeled the cysteine with biotin-PEG2-maleimide to mask the area. The effect on antibody binding was monitored to identify the residues and relative positions important for antibody interactions with the displayed antigen by flow cytometry. By using this method we were able to map the conformational as well as linear epitopes of a panel of monoclonal antibodies down to the residue level with ease, and also identify the regions on the antigen which contribute to the antigen city during immunization in different animals. Since, this method is quite easy, rapid and gives in-depth information about antigenic epitopes, it can be useful in rational design of epitomes specific vaccines and other antibody therapeutics. It can easily be extended to other display systems and is a general approach to probe macromolecular interfaces.
128

In Silico Perspectives on RNA Structures Modulating Viral Gene Expression and Mechanics of tRNA Transport

Gupta, Asmita January 2015 (has links) (PDF)
The repertoire of cellular functions mediated by Ribonucleic acid (RNA) molecules have expanded considerably during the last two decades. The role played by RNA in controlling and regulating gene expression in viruses, prokaryotes and eukaryotes has been a matter of continuous investigations. This interest has arisen primarily due to the discoveries of cisacting RNA structures like riboswitches, ribosensors and frameshift elements, which are found in either the 5’-, 3’-untranslated regions of mRNA or in the open reading frames. These structures control gene expression at the level of translation by either sequestering the Shine-Dalgarno (SD) sequence to regulate translation initiation or modulating ribosomal positions during an active translation process. Very often, these structures comprise of an RNA pseudoknot and it has been observed that these pseudoknots exist in a dynamic equilibrium with other intermediate structures. This equilibrium could be shifted by several factors including presence of ions, metabolites, temperature and external force. RNA pseudoknots represent the most versatile and ubiquitous class of RNA structures in the cell, whose unique folding topology could be exploited in a number of ways by the cellular machinery. In this thesis, a thorough study of programmed -1 ribosomal frameshifting (-1 PRF) process, which is a well known gene regulation event employed by many RNA viruses, was carried out. -1 PRF is a translation recoding process, necessary for viruses to main-tain a stoichiometric ratio of structural: enzymatic proteins. This ratio varies among different viral species. At the heart of this process, lies an RNA pseudoknot accompanied by a seven nucleotide long sequence motif, which pauses an actively translating ribosome on mRNA and causes it to shift its reading frame. The frameshift inducing efficiency of pseudoknot depends on multiple factors, for example the time scale of ribosomal pause and RNA unfolding, subsequent refolding of structure to native/intermediate states and/or environment conditions. With the aim of illustrating the fundamentals of the process, multiple factors involved in -1 PRF were studied. Chapters 2-4 represent distinct aspects of -1 PRF process, while Chapter 5 discusses a different work concerned with nucleocytoplasmic transport of tRNA carried out by nuclear export receptor Exporting. Chapter 1 gives an overview of the different regulatory activities with which RNA structures and sequences are found to be associated and the evolution of these stud-ies. It discusses the different types of structural motifs found to constitute tertiary RNA structure and secondary structure prediction and determination techniques. A brief description of ab initio RNA structure modeling and other relevant tools and methodologies used in this work has been presented. Details of techniques used in each study have been provided in relevant chapters. Chapter 2 describes how local factors like ionic conditions, hydration patterns, presence of protonated residues and single residue mutations affect the structural dynamics of an RNA pseudoknot involved in -1 PRF from a plant luteovirus. Single residue mutations in the loop regions or certain base-pair inversions in the stem regions of pseudoknot increase the frameshift inducing ability of the pseudoknot structure, while some others decrease this efficiency. However, it was not clear how the changes made to the wild-type (WT) RNA pseudoknot from Beet Western Yellow Mosaic virus were affecting the global structure in terms of its dynamics and other parameters. To study this, multiple all-atom molecular dynamics simulations (MD) were performed on WT and mutant structures created in silico. The effect of presence and absence of magnesium ions on the structural geometry was also studied. The analysis was done to identify the increase/decrease in the number of hydrogen bonds formed by Watson-Crick base-pairs in stem region or non Watson-Crick pairs between stem and loop. Ionic and water densities were analyzed and the role of potential ribosome-pseudoknot interaction was elaborated. With the aim of mimicking ribosome induced unfolding of an RNA pseudoknot, steered molecular dynamics pulling experiments were performed. This work was done primarily to understand the unfolding pathway of Hairpin(H)-type pseudoknots in general and the intermediate structures formed. Chapter 3 describes the thermodynamics and mechanics associated with the mechanical pulling of -1 PRF inducing RNA pseudoknot and its mutants described in previous chapter. Analysis of the trajectories reveal relative unfolding patterns in terms of disruption of various hydrogen bonds. This study allowed us to pinpoint the kind of intermediate structures being formed during pulling and whether these intermediate structures correspond to any known secondary structures, such as simple stem-loops. This information could be used for gaining insights into the folding pathways of these structures. An RNA pseudoknot stimulates -1 PRF in conjunction with a heptanucleotide “slippery site” and an intervening spacer sequence. A comprehensive study of analyzing the sequence signatures and composition of all overlapping gene segments harboring these frameshift elements from four different RNA virus families was carried out. Chapter 4 describes the sequence composition of all overlapping gene segments in Astroviridae, Coronaviridae, Retroviridae and Luteoviridae viral families which are known to employ -1 PRF process for maintaining their protein products. Sequence analysis revealed preference for GC bases in the structure forming sequence regions. A comparative study between multiple sequence alignment and secondary structure prediction revealed that while pseudoknots have a clear preference for specific base-pairs in their stem regions, viral families that employ a hairpin loop as -1 PRF structure, doesn’t show this preference. Information derived from secondary structure prediction was then used for RNA ab initio modeling to generate tertiary structures. Furthermore, the structural parameters were calculated for the helices of the frameshift inducing pseudoknots and were compared with the values calculated for a set of non -1 PRF inducing H-type pseudo-knots. This study highlighted the differences between -1 PRF pseudoknots and other H-type pseudoknot structures as well as specific sequence and structural preferences of the former. Chapter 5 discusses the dynamics of a tRNA transport factor Exportint (Xpot), which transports mature tRNA molecules from nucleus to cytoplasm and belongs to Importitβ family of proteins. The global conformational dynamics of other transport receptors has been reported earlier, using coarse-grained modeling and Elastic Network Models (ENMs), but a detailed description of the dynamics at an all-atomic resolution was lacking. This transport requires association of Xpot with RanGTP, a G-protein, in the nucleus and hydrolysis of RanGTP in the cytoplasm. The chain of events leading to tRNA release from Xpot after RanGTP hydrolysis was not studied previously. With these objectives, several molecular complexes containing Xpot bound to Ran or tRNA or both in the GTP and GDP ligand states as well as free Xpot structures in nuclear and cytosolic forms were studied. A combination of conventional and accelerated molecular dynamics simulations was used to study these molecular complexes. The study highlighted various aspects associated with tRNA release and conformational change which occurs in Xpot in cytosolic form. The nuclear to cytosolic state transition in Xpot could be attributed to large fluctuations in C-terminal region and dynamic hinge-points located between specific HEAT repeats. A secondary role of Xpot in controlling the quality of tRNA transport has been proposed based on multiple sequence and structure alignment with Importin-β protein. The loss of critical contacts like hydrogen bonds and salt bridges between Xpot/Ran and Xpot/tRNA interface was evaluated in order to study the initial effects of RanGTP hydrolysis and how it influences receptor-cargo binding. This study revealed various aspects of tRNA transport process by Xpot, not understood previously. The results presented in this thesis illustrate the role of RNA sequence elements and pseudoknots present in RNA viruses in modulating -1 PRF process and how multiple environmental factors affect -1 PRF inducing ability of the structure. From the studies of Xpot and its complexes, the effects of GTP hydrolysis leading to tRNA dissociation have been presented and the progression of conformational transition in Xpot after tRNA dissociation has been highlighted. Chapter 6 summarizes major conclusions of this thesis work. The refolding of single stranded RNA chains, subjected to a previous unfolding simulation is studied. Appendix A describes this work and initial results. Appendix B describes the effect of improved molecular dynamics force fields, containing corrections for χ torsion angle for RNA, on the conformation of tertiary RNA structures. Part of the work presented in this thesis has been reported in the following publications. 1.Asmita Gupta and Manju Bansal. Local Structural and Environmental Factors De-fine the Efficiency of an RNA Pseudoknot Involved in Programmed Ribosomal Frameshift Process. J. Phys. Chem. B. 118 (41), pp 11905-11920. 2014 2.Asmita Gupta, Senthilkumar Kailasam and Manju Bansal. Insights Into Nucleo-cytoplasmic Transport of tRNA by Exportin-t. Manuscript under review. List of manuscripts that are being prepared from the work reported in Chapter 3 in this thesis. 1 Asmita Gupta and Manju Bansal. The role of sequence effects on altering the un-folding pathway of an RNA pseudoknot: a steered molecular dynamics study. Manuscript in preparation. 2 Asmita Gupta and Manju Bansal. Molecular basis for nucleocytoplasmic transport of tRNA by Exportin-t. Journal of Biomolecular Structure and Dynamics, May;33 Suppl 1:59-60, 2015
129

Physiological Interactions between Neuronal Active Conductances And Inositol Trisphosphate Receptors in Neurons and Astrocytes

Ashhad, Sufyan January 2015 (has links) (PDF)
Intricate interactions among constituent components are defining hallmarks of biological systems and sculpt physiology across different scales spanning gene networks to behavioural repertoires. Whereas interactions among channels and receptors define neuronal physiology, interactions among different cells specify the characteristic features of network physiology. From a single-neuron perspective, it is now evident that the somato-dendritic plasma membrane of hippocampus pyramidal neurons is endowed with several voltage-gated ion channels (VGICs) with varying biophysical properties and sub cellular expression profiles. Structural and physiological interactions among these channels define generation and propagation of electrical signals, thereby transforming neuronal dendrites to actively excitable membrane endowed with complex computational capabilities. In parallel to this complex network of plasma membrane channels is an elegantly placed continuous intraneuronal membrane of the endoplasmic reticulum (ER) that runs throughout the neuronal morphology. Akin to the plasma membrane, the ER is also endowed with a variety of channels and receptors, prominent among them being the inositol trisphosphate (InsP3) receptors (InsP3Rs) and ryanodine receptors (RyR), both of which are calcium release channels. Physiological interactions among these receptors transform the ER into a calcium excitable membrane, capable of active propagation of calcium waves and of spatiotemporal integration of neuronal signals. Thus, a neuron is endowed with two continuously parallel excitable membranes that actively participate in the bidirectional flow of intraneuronal information, through interactions among different channels and receptors on either membrane. Although the interactions among sets of channels and receptors present individually on either membrane are very well characterized, our understanding of cross-membrane interactions among channels and receptors across these two membranes has been very limited. Recent literature has emphasized the critical nature of such cross-membrane interactions and the several physiological roles played by such interactions. Such cross-channel interactions include ER depletion-induced signaling involving store-operated calcium channels, generation and propagation of calcium waves through interactions between plasma membrane and ER membrane receptors, and the plasticity of plasma membrane VGICs and receptors induced by ER Ca2+. Such tight interactions between these two membranes have highlighted several roles of the ER in the integration of intraneuronal information, in regulating signalling microdomains and in regulating the downstream signaling pathways that are regulated by these Ca2+ signals. Yet, our understanding about the functional interactions between the ion channels and receptors present on either of these membranes is very limited from the perspective of the combinatorial possibilities that encompass the span of channels and receptors across these two membranes. In this context, the first part of this thesis deals with two specific instances of such cross-membrane functional interactions, presented as two subparts with each probing different direction of impact. Specifically, whereas the first of these subparts deals with the impact of plasma membrane VGICs on the physiology of ER receptors, the second subpart presents an instance of the effect of ER receptor activation on plasma membrane VGIC. In the first subpart of the thesis, we establish a novel role for the A-type potassium current in regulating the release of calcium through inositol triphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampus pyramidal neurons. Specifically, the A-type potassium current has been implicated in the regulation of several physiological processes including the regulation of calcium influx through voltage-gated calcium channels (VGCCs). Given the dependence of InsP3R open probability on cytosolic calcium concentration ([Ca2+]c) we asked if this regulation of calcium influx by A-type potassium current could translate into the regulation of release of calcium through InsP3Rs by the A-type potassium current. To answer this, we constructed morphologically realistic, conductance-based neuronal models equipped with kinetic schemes that govern several calcium signalling modules and pathways, and constrained the distributions and properties of constitutive components by experimental measurements from these neurons. Employing these models, we establish a bell-shaped dependence of calcium release through InsP3Rs on the density of A-type potassium current, during the propagation of an intraneuronal calcium wave initiated through established protocols. Exploring the sensitivities of calcium wave initiation and propagation to several underlying parameters, we found that ER calcium release critically depends on dendrite diameter and wave initiation occurred at branch points as a consequence of high surface area to volume ratio of oblique dendrites. Further, analogous to the role of A-type potassium channels in regulating spike latency, we found that an increase in the density of A-type potassium channels led to increases in the latency and the temporal spread of a propagating calcium wave. Next, we incorporated kinetic models for the metabotropic glutamate receptor (miler) signalling components and a calcium-controlled plasticity rule into our model and demonstrate that the presence of mGluRs induced a leftward shift in a BCM-like synaptic plasticity profile. Finally, we show that the A-type potassium current could regulate the relative contribution of ER calcium to synaptic plasticity induced either through 900 pulses of various stimulus frequencies or through theta burst stimulation. These results establish a novel form of interaction between active dendrites and the ER membrane and suggest that A-type K+ channels are ideally placed for inhibiting the suppression of InsP3Rs in thin-caliber dendrites. Furthermore, they uncover a powerful mechanism that could regulate biophysical/biochemical signal integration and steer the spatiotemporal spread of signalling micro domains through changes in dendritic excitability. In the second subpart, we turned our focus to the role of calcium released through InsP3Rs in regulating the properties of VGICs present on the plasma membrane, thereby altering neuronal intrinsic properties that are dependent on these VGICs. Specifically, the synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signalling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. Here, we complemented the recently established necessity of inositol trisphosphate (InsP3) receptors (InsP3R) in a form of intrinsic plasticity by asking if ER InsP3R activation was sufficient to induce plasticity in intrinsic properties of hippocampus neurons. To do this, we employed whole-cell patch-clamp recordings to infuse D-myo-InsP3, the endogenous ligand for InsP3Rs, into hippocampus pyramidal neurons and assessed the impact of InsP3R activation on neuronal intrinsic properties. We found that such activation reduced input resistance, maximal impedance amplitude and temporal summation, but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead of hippocampus pyramidal neurons. Strikingly, the magnitude of plasticity in all these measurements was dependent upon [InsP3], emphasizing the graded dependence of such plasticity on InsP3R activation. Mechanistically, we found that this InsP3-induced plasticity depended on hyperpolarization-activated cyclic-nucleotide gated (HCN) channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP3Rs, the influx of calcium through N-methyl-D -aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. These results delineate a causal role for InsP3Rs in graded adaptation of neuronal response dynamics through changes in plasma membrane ion channels, thereby revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis. Whereas the first part of the thesis dealt with bidirectional interactions between ER membrane and plasma membrane channels/receptors within a neuron, second part focuses on cross-cellular interactions, specifically between ER membrane on astrocytes and dendritic plasma membrane of neurons. Specifically, the universality of ER-dependent calcium signalling ensures that its critical influence extends to regulating the physiology of astrocytes, an abundant form of glial cells in the hippocampus. Due to the presence of calcium release channels on ER membrane, astrocytes are calcium excitable, whereby they respond to neuronal activity by increase in their cytosolic calcium levels. Specifically, astrocytes respond to the release of neurotransmitters from neuronal presynaptic terminals through activation of metabotropic receptors expressed on their plasma membrane. Such activation results in the mobilization of cytosolic InsP3 and subsequent release of calcium through InsP3 on the astrocytes ER membrane. These ER-dependent [Ca2+]c elevations in astrocytes then result in the release of gliotransmitters from astrocytes, which bind to corresponding receptors located on neuronal plasma membrane resulting in voltage-deflections and/or activation of signaling pathways in the neuron. Although it is well established that gliotransmission constitutes an important communication channel between astrocytes and neurons, the impact of gliotransmission on neurons have largely been centered at the cell body of the neurons. Consequently, the impact of the activation of astrocytic InsP3R on neuronal dendrites, and the role of dendritic active conductances in regulating this impact have been lacking. This lacuna in mapping the spatial spread of gliotransmission in neurons is especially striking because most afferent synapses impinge on neuronal dendrites, and a significant proportion of information processing in neurons is performed in their dendritic arborization. Additionally, given that active dendritic conductances play a pivotal role in regulating the impact of fast synaptic neurotransmission on neurons, we hypothesized that such active-dendritic regulation should extend to the impact of slower extrasynaptic gliotransmission on neurons. The second part of the thesis is devoted to testing this hypothesis using dendritic and paired astrocyte-neuron electrophysiological recordings, where we also investigate the specific roles of active dendritic conductances in regulating the impact of gliotransmission initiated through activation of astrocytic InsP3Rs. In testing this hypothesis, in the second part of the thesis, we first demonstrate a significantly large increase in the amplitude of astrocytically originating spontaneous slow excitatory potentials (SEP) in distal dendrites compared to their perisomatic counterparts. Employing specific neuronal infusion of pharmacological agents, we show that blocking HCN channels increased the frequency, rise-time and width of dendritically-recorded spontaneous SEPs, whereas blockade of A-type potassium channels enhanced their amplitude. Next, through paired neuron-astrocytes recordings, we show that our conclusions on the differential roles of HCN and A-type potassium channels in modulating spontaneous SEPs also extended to SEPs induced through infusion of InsP3 in a nearby astrocyte. Additionally, employing subtype-specific receptor blockers during paired neuron-astrocyte recordings, we provide evidence that GluN2B-and GluN2D-containing NMDARs predominantly mediate perisomatic and dendritic SEPs, respectively. Finally, using morphologically realistic conductance-based computational models, we quantitatively demonstrate that dendritic conductances play an active role in mediating compartmentalization of the neuronal impact of gliotransmission. These results unveil an important role for active dendrites in regulating the impact of gliotransmission on neurons, and suggest astrocytes as a source of dendritic plateau potentials that have been implicated in localized plasticity and place cell formation. This thesis is organized into six chapters as follows: Chapter 1 lays the motivations for the questions addressed in the thesis apart from providing the highlights of the results presented here. Chapter 2 provides the background literature for the thesis, introducing facts and concepts that forms the foundation on which the rest of the chapters are built upon. In chapter 3, we present quantitative analyses of the physiological interactions between A-type potassium conductances and InsP3Rs in CA1 pyramidal neurons. In chapter 4, using electrophysiological recordings, we investigate the role of calcium released through InsP3Rs in induction of plasticity of intrinsic response dynamics, and demonstrate that this form of plasticity is consequent to changes in neuronal HCN channels. In chapter 5, we systematically map the spatial dynamics of the impact of gliotransmission on neurons across the somato-apical trunk, also unveiling the role of neuronal HCN and A-type potassium channels in compartmentalizing such impact. Finally, chapter 6 concludes the thesis highlighting its major contributions and discussing directions of future research.
130

Design and Characterization of HIV-1 ENV Derived Immunogens

Purwar, Mansi January 2016 (has links) (PDF)
The Human Immunodeficiency Virus (HIV) is a member of the retroviridae family from lentivirus genus which primarily infects CD4+ T cells and also to lesser degree monocytes, macrophages, and dendritic cells causing progressive failure of the immune system, ultimately leading to development of acquired immunodeficiency syndrome (AIDS). Currently ~ 37 million people are infected with HIV-1 with approximately 2 million new infections occurring every year (UNAIDS, 2016). Developing safe, effective, and affordable vaccines to prevent HIV infection is the best hope for controlling the HIV/AIDS pandemic. Envelope glycoprotein (Env) on the HIV-1 virion surface is synthesized as a single precursor protein gp160 which is cleaved by furin to form the gp120 and gp41 subunits. gp41 is inserted into the membrane, while gp120 remains non-covalently associated with the ectodomain of gp41 to form a trimer of heterodimers. gp120 binds to the CD4 receptor on CD4+ T cells, which triggers a series of conformational changes leading to the exposure of co-receptor binding sites on gp120. Subsequent binding to the co-receptor (CXCR4 or CCR5) on T-cells initiates fusion of cellular and viral membranes via gp41 subunit. The envelope glycoprotein gp120, on the virion surface is the most accessible component of HIV-1 to the host immune system, and the target of most of the neutralization response. However, the virus has evolved many efficient ways to escape this immune surveillance. Extensive glycosylation of gp120 is one way by which it masks critical neutralization epitopes and the presence of immunodominant long variable loops focuses the immune response away from conserved regions. Certain conserved epitopes are cryptic and get exposed only after gp120 binds to its receptor. Also gp120 and gp41 are highly flexible molecules, attached in a non-covalent fashion to form a trimer of heterodimers, leading to inherent metastability of the Env. This results in exposure of a large number of non-native conformations to the immune system and thus minimizes elicitation of neutralizing antibodies. Despite these defense mechanisms, about 20-30% of HIV-1 patients do generate a broad neutralization response. Although these bNAbs and their epitopes have been identified, eliciting similar bNAbs through immunization is challenging. Monomeric gp120 when used as an immunogen elicits non neutralizing antibodies. This indicates that the epitopes of bNAbs are not present in the right conformation on this molecule. A rational design approach which focuses the immune response towards specific epitopes targeted by bNAbs is required, with the aim to maximize the exposure of conserved neutralization epitopes and to simultaneously ensure minimal exposure of variable non neutralizing epitopes. This can likely be achieved either by (a) stabilization of native Env trimers, or/and by (b) protein fragment design. Chapter 1 gives a brief description of HIV-1 virus. Structural features of the Env protein are described along with epitopes targeted by various bNAbs. Various strategies employed towards structure based vaccine design are discussed. One of the strategies towards rational vaccine design is using protein fragment based approaches. Grafting epitopes onto heterologous scaffolds is a promising approach which can provide more structural stability to the epitope, helps focus immune response on the epitope of interest and can be employed in a prime boost strategy for immunization studies. In a scaffold based approach we used crystal structure information of gp120 in complex with bNAb b12 to define the epitope of this antibody. In Chapter 2 we use this epitope information to graft the epitope on an unrelated scaffold protein to design unique epitope scaffolds. We report a computational strategy to graft the discontinuous epitope of b12 antibody onto different scaffold proteins. Our strategy focuses on identifying the best match of the target scaffold to the query protein so as to cause the least structural disturbance in the scaffold protein. The best hits were screened for binding to b12 using Yeast Surface Display (YSD). Random mutant libraries were also generated to screen for better b12 binders using YSD. We further characterized a few of these epitope scaffolds after purifying them from bacterial systems. One of the epitope scaffolds 1mkh_E2 bound to b12 with a KD value of 7.5µM. 2bodx_03, an unoptimized epitope scaffold reported previously (Azoitei et al, 2011) binds b12 with a KD value of 300μM. Thus our epitope scaffold 1mkh_E2 shows reasonable binding to b12 without any optimization. We are currently purifying other b12 epitope scaffolds and will be characterizing them for binding to b12. We have previously used a protein minimization strategy to design fragments of gp120, called b122a and b121a comprising a compact beta barrel on the lower part of the outer domain in order to focus the immune response towards the b12 epitope. (Bhattacharyya et al, 2013). These were bacterially expressed, found to be partially folded, however, could bind the broadly neutralizing antibody b12 with micromolar affinity. In rabbit immunization studies sera obtained following four primes with the b122a fragment protein and two boosts with full-length gp120 showed broad neutralization of a panel of multiple viruses across different clades (Bhattacharyya et al, 2013). In the present work, These designs were further stabilised by introducing various disulphides. One of the disulphide mutants b122a1-b showed better binding to b12 compared to b122a and increased protection to protease digestion. However these are partially structured as assessed by CD. In Chapter 3 we attempted to evolve stabilized versions of b122a1-b by using a genetic selection based on antibiotic resistance described previously (Foit et al, 2009). We were successfully able to show an in-vivo stability difference between b122a and b122a1-b. From the library generated in the background of b122a1-b using random mutagenesis, a few apparently stabilized mutants were isolated. Most of these mutations were hydrophobic to polar substitutions at exposed positions while a few of the mutations were substitutions with similar side chain chemistry as in wildtype. In future studies we will measure mutant stabilities and binding affinity to b12. A set of similar fragment immunogens were also designed based on subtype C CAP210 gp120 sequences. In Chapter 4 we describe various immunization studies comprising of different sets of b12 epitope based fragment immunogens. In one study we displayed some of these immunogens on Qβ VLPs. In another study, we tested subtype C based fragment immunogens. The humoral immune response was probed in terms of generation of antibodies against the immunogens using ELISA. Neutralization activity of the sera was measured in a standard TZM-bl assay. Sera raised against these particles in rabbit immunization studies could neutralize Tier1 viruses across different subtypes. The group primed with particles displaying b122a1-b and the group primed with b122a conjugated to particle in the presence of adjuvant contained significantly higher amounts of antibodies directed towards the CD4bs than sera from the group primed with empty particles and boosted with gp120. This study demonstrates the overall utility of the particle based display approach. In immunization studies with subtype C derived fragment immunogens as primes, no significant neutralization was seen even for Tier 1 viruses. In this study, the group primed and boosted with full length gp120 performed better than other groups suggesting that antibodies elicited against regions present in these subtype C priming immunogens are non-neutralizing. One of the rational vaccine design strategies is by stabilization of native Env trimers. In previous studies, a disulfide bond was engineered between gp120 and gp41 of Env to stabilize the interactions (SOS gp140). An I559P mutation was also introduced to stabilize the native gp41 conformation in the context of disulfide engineered Env (SOSIP gp140). The purified, soluble SOSIP gp140 immunogens were trimeric and cleaved properly and are believed to be one of the closest mimics of native Env trimers. However, these immunogens have so far failed to elicit broad neutralizing responses. In Chapter 5, we use structural information derived from high resolution atomic structure of native like cleaved gp140 BG505-SOSIP, to provide an alternate strategy to form uncleaved trimeric gp140s by cyclic permutation to design molecules that mimic cleaved trimers. The structure reveals that the gp41 C-terminus is in very close proximity (~8Å) to the N-terminus of gp120 from an adjacent subunit. We have designed a cyclic permutant of gp140 from JRFL strain where the gp41 C terminus is now connected to the gp120 N-terminus with a short linker. This novel connectivity results in preservation of the native gp41 N-terminus along with a much shorter linker length than in conventional gp140. This might promote trimer folding and stabilization because of the resulting decreased magnitude of conformational entropy change during folding. The structure also reveals that the gp120 C-terminus is close to the trimer axis, and due to cyclic permutation, this becomes the new C-terminus of gp140. To further stabilize the trimeric form, we have attached a foldon trimerization domain at the C terminus. The protein has been expressed and purified from mammalian cells. The protein exists primarily as a trimer in solution as assessed by SEC-MALS. It shows better binding to broadly neutralizing antibody b12 when compared to b6, a non-neutralizing antibody. Further biophysical characterization of the protein is in progress. We have previously described design of a bacterially expressed outer domain derivative of gp120 (ODEC) that had V1/V2 and V3 loops deleted and bound CD4 (Bhattacharyya et al, 2010). To improve the initial ODEC design, three different rational design strategies were used. In the first approach, residue frequency based methods were used to design a construct named ODECConsensus. In another approach, a cyclic permutant of ODEC (CycV4OD) was designed with new N and C termini in the flexible V4 loop. In the third approach the bridging sheet (BS) region was deleted from ODEC to form ODECΔBS. In Chapter 6 we have used hydrogen deuterium exchange-mass spectrometric analysis (HDX-MS) to study conformational flexibility of these fragment immunogens. These studies revealed that all the three immunogens show reduced conformational flexibility compared to ODEC. 5-7 protons remain protected up to 2 hours whereas for ODEC, exchange completes at 20 minutes. This reduced flexibility correlates with 6-20 fold tighter VRC01 binding relative to ODEC. In rabbit immunizations, all three constructs elicit significant gp120 titers as early as week 6 in the absence of any gp120 boost whereas ODEC shows significant gp120 titers only after two gp120 boosts. Week 24 sera elicited after immunization with ODECΔBS, ODECConsensus and CycV4OD boosted with gp120 show neutralization of multiple Tier 1 viruses from subtype B and C, whereas corresponding ODEC immunized animals failed to show a neutralizing response. This study demonstrates that reduced conformational flexibility correlates with better antigenicity and an improved immunogenicity profile for these fragment immunogens. Also we have used HDX-MS studies to one of the stem based HA fragment immunogen pH1HA10-foldon described previously (Mallajosyula et al, 2014) to do peptide finger printing and find regions of protein showing increased protection to hydrogen deuterium exchange and thus derive some structural insights about this trimeric fragment immunogen. Peptide mapping experiments show that the HA stem fragment peptides are exchanging rapidly with more than 90% exchange completing by 30 s for most of the peptides. The well folded foldon trimerization domain peptide shows a very slow exchange profile. A few of the HA peptides exchange slowly with 1-2 protons exchanging after 30 s. Fast exchange seen for this fragment immunogen may be due to truncation of the stem region leading to greater solvent accessibility of the trimer interface.

Page generated in 0.061 seconds